
Continuous Integration from Git within MDCMS - Midrange Dynamics Wiki      9/16/24, 9:04 PM

© Copyright by Midrange Dynamics 2024       Page 1 / 15

Continuous Integration from Git within MDCMS

Midrange Dynamics

From Version 8.6.1

Published May 12, 2024

Overview

What is Continuous Integration?

Continuous Integration (or CI) is the ability to automatically push modifications into the deployment cycle to target

environments.

The other side of CI is CD, or Continuous Deployment, which is already fully handled by MDCMS itself, so this

tutorial focuses on CI.

In the case of CI with Git, it is possible to configure the Git server to notify MDCMS whenever a Commit is pushed

to the server for a specific repository.

Git then invokes the MDCMS webhook to trigger the CI processing. MDCMS inspects the files that were

committed and if they reside in a branch and path that have been defined to be relevant, then MDCMS will retrieve

the files from the Git server and place them on Object Requests within MDCMS for deployment to a target

application level.

Prerequisites for using CI with MDCMS from Git

An active MDCMS and MDOpen license (v8.2+) on the IBM i partition used to configure and connect with the

Git server. A minimum MDCMS version of 8.6 is recommended.

The MDOpen extension for VS Code or the MDOpen plug-in for Eclipse for performing the CI configuration.

The type of Git server must be Azure DevOps, Bitbucket, GitHub or GitLab. These cover the most commonly

used Git servers. If you use something else, let us know and we may be able to provide a Webhook for it.

An active MDWorkflow Base license and a running MDCMS API http server must exist on the IBM i partition in

order to enable the Webhook REST APIs. More information on MDREST API configuration can be found here.

If you would like MDCMS to automatically generate Pull Requests once a deployment is complete to a

particular target level, a MDWorkflow Pipeline license is also required.

The Git server must be reachable within the network by the IBM i partition

The MDCMS HTTP server must be reachable within the network by the Git server

file:///home/vsts/work/1/s/sites/Knowledge-Guides/manuals/RESTAPI


Continuous Integration from Git within MDCMS - Midrange Dynamics Wiki      9/16/24, 9:04 PM

© Copyright by Midrange Dynamics 2024       Page 2 / 15

Continuous Integration from Custom tools

The ability to push Object Requests from other tools that you have control over is possible by using the

MDADDREQ command, the Object Request REST API or the Pipeline Request Trigger REST API.

Configure the Interface in MDOpen

Define the Git Credentials

Most Git Servers require authentication to communicate with a Git repository. If the repositories you need to

connect allow anonymous access, you can skip to the next step.

Within the MDOpen option tree, click on Settings→DevOps Settings→Git Credentials

Within the Git Credentials view, click option Add

General Repository Settings

Credential ID A unique identifier of up to 10 characters for a specific authentication configuration

Description A description of the credentials

Git Authentication SSH - A private/public key pair are used for authentication

User/Password - a user and password are used for authentication

SSH Authentication Settings

Register new

Private/Public Key Pair

enter or browse for the private or public key on your pc that is registered to be

used on the Git server.

The private key and public key must be in the same directory and have the same

name, except for a .pub file type on the public key.

For example the private key could be called githubkey and the public key could be

called githubkey.pub

Set New Passphrase If the private key is protected by a passphrase, enter it here

NOTE: MDCMS no longer supports SHA1 keys as they have been largely deprecated by the SSH community.

If you do not yet have a SHA2 public/private keypair available on your PC, here are steps to create them:

1. Go into a command prompt and execute the following command:

ssh-keygen -t rsa-sha2-256 -b 2048 -C "MDCMS SSH Key"



Continuous Integration from Git within MDCMS - Midrange Dynamics Wiki      9/16/24, 9:04 PM

© Copyright by Midrange Dynamics 2024       Page 3 / 15

2. You will then be prompted for the name and location of the keys. Change/Note that name

3. You will then be prompted for a passphrase – this is recommended to protect the keys

4. The keys will then be generated

5. Open the public key in an editor and copy the entire string

6. Register the string as a new SSH key within the settings of the Git service that you use

User/Password Authentication Settings

Repo User The user id of the user registered on the Git server

Set New Password The password of the user on the server

Once the values are entered, click Save.

Define the API Server

If your Git repositories are hosted by Azure DevOps, Bitbucket, GitHub or GitLab, and you have a MDWorkflow

Pipeline license, you can define the host servers as API servers to communicate with them using REST. This

provides the following 2 advantages:

1. You can very easily generate the Webhook definitions from within MDOpen

2. You can automatically generate Pull Requests once MDCMS has completed deployment to a specified target

level.

If this does not apply to your situation, you can skip to the next step.

Within the MDOpen option tree, click on Settings→DevOps Settings→API Servers

Within the API Servers view, click option Add

General API Server Settings

Server ID A unique identifier of up to 10 characters for a specific server

Description A description of the server

Server Type Select the type of Git Server that you will be connecting to:

Azure DevOps

Bitbucket

GitHub

GitLab



Continuous Integration from Git within MDCMS - Midrange Dynamics Wiki      9/16/24, 9:04 PM

© Copyright by Midrange Dynamics 2024       Page 4 / 15

API Server URL The URL of the server. For example: https://dev.azure.com

Azure DevOps API Server Settings

User The user ID on the server – usually an email address

Set New

Token

A valid Personal access token with rights to repositories, webhooks and pull requests. This can

be set within Azure DevOps by clicking on User settings at the top right and selecting option

Personal Access Tokens

Organization The name of the organization that the project containing the repositories belongs to

Project The name of the ADO project containing the repositories

Bitbucket Cloud API Server Settings

Set New

Token

A valid Access Token with rights to repositories, webhooks and pull requests. This can be set

for a workspace or for a specific repository

Workspace The ID of the workspace that contains a collection of Git repositories. The value can be seen in

URL when viewing the Repositories list

Bitbucket Data Center (or Server) API Server Settings

User The user ID on the server

Set New

Token

A valid Personal access token with rights to repositories, webhooks and pull requests. This can be

set within Bitbucket by clicking on Manage User at the top right and selecting option Personal

Access Tokens

Project The key of the Project containing the repositories

GitHub API Server Settings

User The user ID on the server

Set New

Token

A valid Personal access token with rights to repositories, webhooks and pull requests. This can

be set within GitHub by clicking on User settings at the top right and selecting option Settings.

https://dev.azure.com/


Continuous Integration from Git within MDCMS - Midrange Dynamics Wiki      9/16/24, 9:04 PM

© Copyright by Midrange Dynamics 2024       Page 5 / 15

Then click option Developer settings. Then click option Personal access Tokens

Organization The name of the organization that the repositories belong to, if applicable

GitLab API Server Settings

User The user ID on the server

Set New

Token

A valid Personal access token with rights to repositories, webhooks and pull requests. This can be

set within GitLab by clicking on User settings at the top right and selecting option Preferences. Then

click option Access Tokens. Set scope to api.

Define the Git Repository in MDOpen

MDCMS needs to know the URL of each Git Repository that will push artifacts to MDCMS.

Within the MDOpen option tree, click on Settings→DevOps Settings→Git Repositories

If the Repository is not yet defined, select option Add

Repository Settings

Repository ID A unique identifier of up to 10 characters for the repository

URL The network address (including http(s):// or git@) for the repository. The correct URL can

usually be copied from the Git Server administration screen. However, if it is in http format and

contains //user@host, then remove the user@ portion of the URL.

Git Type Select the type of Git Server that you will be connecting to:

Azure DevOps

Bitbucket

GitHub

GitLab

Other

If it is one of the first 4, MDCMS has a specific Webhook defined for them and can be directly

triggered for CI. When it is Other, you will need to have a pipeline tool such as Jenkins in

between and then Jenkins can trigger the CI using MDCMS API /git/checkout.

If it is one of the first 4, but you prefer that MDCMS is not involved until later in the DevOps

process, you can also set the type to Other and use your master pipeline tool to orchestrate the

CI.

Description A description of the repository



Continuous Integration from Git within MDCMS - Midrange Dynamics Wiki      9/16/24, 9:04 PM

© Copyright by Midrange Dynamics 2024       Page 6 / 15

Credential ID If credentials are required, enter the Credential ID or use content-assist to select the ID of the

credentials that provide access to the repository.

API Server

ID

For simplified registration of webhooks and automated generation of Pull Requests, the

repository needs to be tied to a API Server.

Enter the API Server ID or use content-assist to select the ID of the server that provides REST

API access to the Git server.

URL Value in

Webhook

When the MDCMS webhook is triggered after the push of a commit, MDCMS attempts to map

the URL in the webhook request body to a repository ID. If the URL in the request body is

different than the URL used for MDCMS to clone/sync with the origin repository, the value in the

webhook can be entered here. The value can best be obtained from the Git Webhook

Deliveries entry after the webhook is triggered.

Main Branch The name of the primary branch for the repository. This is typically main or master, but

depending on the usage preferences, may be a different one. The Main Branch will be what is

used for cross-referencing and pull-request merge purposes.

After these parameters are set, click Save. The MDGit service on the IBM i will then try to connect to the Git

server using the credentials of the Credential ID (when not anonymous).

If this is not successful, click the Connection Logs icon for the Repository ID and open today’s log to view the

details of the exception. If a log is not available, then the MDGIT service job did not auto-start. In this case review

the MDGIT service job settings such as job queue and auto-start.

If the connection is successful, MDCMS will automatically clone the main branch in the IFS under the

/MDCMS/EXTREF folder. A re-clone is possible at any time by selecting option Re-Clone Main Branch for the

Repository ID.

Map Git Users to MDCMS Users in MDOpen

If the developers that will commit changes to the Git server have different user IDs on the Git server than they

have in MDCMS, their IDs can be mapped so that the correct user owns the object requests that are automatically

created by the CI process.

Within the MDOpen Git Repositories view, select option User Mapping

Mapping Settings

Repository User The User ID of a User on the Git Server. This value is case sensitive

MDCMS User The User ID of a User registered in MDCMS (MDSEC) to be mapped to



Continuous Integration from Git within MDCMS - Midrange Dynamics Wiki      9/16/24, 9:04 PM

© Copyright by Midrange Dynamics 2024       Page 7 / 15

Repo ID *ANY - any repository containing the Repository User should map to the given MDCMS User

Otherwise, specify the Repository ID or use content-assist to select from the list

Define the Continuous Integration Settings in MDOpen

Once the repository is defined, the repository, or certain paths within the repository, can be configured for CI.

Within the MDOpen option tree, click on Settings→DevOps Settings→Continuous Integrations

If the integration is not yet defined, select option Add. Multiple CI definitions can be created for the same

repository when various granular selections are required.

CI Settings

Repo ID The ID of the Repository. Use content-assist to select from the list of defined Git

repositories.

Branch Opt Defines which branch within the repository triggers CI processing in MDCMS.

Main Branch – when a commit is pushed to the branch designated as Main Branch in the

MDOpen Repository definition

Not Main Branch – when a commit is pushed to any branch except the Main Branch

Specific Branch – when a commit is pushed to the branch selected in Specific Branch.

Specific Branch When Branch Opt = Specific Branch, enter the name of the branch or use content-assist to

select it from a list

Path if blank, then anything committed to the repository will be pushed to MDCMS.

Otherwise, specify the path to limit the pushed items to anything located in the path or within

a child directory of the path.

If multiple paths should be considered for the same repository, copy the setting record for

each additional distinct parent path.

If the repository has already been cloned to MDCMS, content-assist can be used to select

the path.

File Naming

Pattern

If blank, then any files in the path will be requested (unless blocked in the Attribute

Mapping). Otherwise, state the naming pattern to filter which files to request. For example,

*.jar for any files of type jar

Application The target MDCMS application to push objects to

*APPL - the application will be determined by the Application field for the task that the object

request will be assigned to

specific application - enter the id of a defined application or select using content-assist



Continuous Integration from Git within MDCMS - Midrange Dynamics Wiki      9/16/24, 9:04 PM

© Copyright by Midrange Dynamics 2024       Page 8 / 15

Level The target MDCMS application level to push objects to. The level must allow checkouts,

unless the parameter "Level is Target of a Merge" is set to true.

If Application is set to *APPL, and a specific level number is defined for the CI definition,

then the Level field for the task that the object request will be assigned to is used.

If level is 0, MDCMS will retrieve the lowest level number allowing checkout for the

application. When parameter "Level is Target of a Merge" is set to true, a specific level

number must be defined.

Level is Target of

a Merge

If the push from the branch will target a level that doesn't allow checkouts (such as QA or

production), set this parameter to true. This typically occurs after a Pull Request is

completed that merges changes into QA or production branch.

Checkout Diffs - only push the differences (adds/changes/deletes) based on comparing the working

tree for the branch before and after the commit

Contents - push the complete contents of the path

Request

IFS/Remote

Objects

If true, the contents of the path are directories and files that will be deployed to the IFS or a

remote Linux or Windows server

Request Source

for IBMi Objects

If true, the contents of the path are source files of system objects on the IBM i

NOTE: a specific CI definition can only be for IFS/Remote Objects or for Source for IBMi

Objects - not for both at the same time. If both exist on the repository, then create a CI

definition for each.

Default MD

Attribute

The MDCMS Attribute to assign to the pushed objects, if attribute mapping doesn't locate an

attribute. This is recommended for IFS/Remote Objects and can be of type *IFS, *PIPE or

*REMOTE.

If for Source, it can be used, if mapping, history and MDXREF doesn't find a match.

Default User The default user to assign the object requests to, if the user isn't found in the mapping table

for the Repository

Relative Path The relative path for the object requests.

From Repo Root - the relative path is the entire path from the repository itself

From Repo Path - the relative path is only any folders located below the path defined in the

Path parameter

No Relative Path - all files should be deployed directly to the target folder for the attribute

rather than a relative path under that folder.

Map to IFS Path If requesting source for IBM i objects, the correct MDCMS attribute to use for source that is

new to MDCMS can be more accurately selected if the source for the target level is stored in

the IFS and the folder structure and naming is identical to the working tree of the repository.



Continuous Integration from Git within MDCMS - Midrange Dynamics Wiki      9/16/24, 9:04 PM

© Copyright by Midrange Dynamics 2024       Page 9 / 15

For example, program source and module source each use the same file types, so MDCMS

can’t know which attribute to apply based only on the file type, but if module source is kept

in a different folder than program source on both the repository and in the IFS on the IBM i,

then MDCMS will know the intent.

Project The project to assign to the Object Requests. If blank, the project can be assigned prior to

submitting the RFP

*BRANCH – the repository branch name is either the reference code for an Azure Workitem,

Jira Issue or ServiceNow task, or it is a MDCMS Project/Task/Subtask. See those special

values for instructions, whereby MDCMS will parse the branch name instead of the commit

message and a : ending delimiter isn’t expected.

If the branch naming convention will be more descriptive than a Reference ID or MDCMS

Project/Task/Subtask ID, then do the following:

1) create a Custom Project/Task field to contain the branch name. It should be defined as a

String and may be up to 160 characters in length.

2) Add the Custom Field to the appropriate Task Types

3) If using Azure DevOps, Jira or ServiceNow to manage tasks, add the custom field to the

screen for those tasks and map the field to the MDCMS Custom field.

4) Enter the value of the new branch into the task field prior to committing changes to the

branch.

*AZUR - The project/task/subtask will be based on the Azure Workitem number in the

commit message. For this to work, the developer must enter the Azure Workitem number at

the very beginning of the commit message and the workitem must have already been

exported into MDCMS.

*JIRA - The project/task/subtask will be based on the JIRA Issue Key in the commit

message. For this to work, the developer must enter the JIRA Issue Key at the very

beginning of the commit message and the issue must have already been exported into

MDCMS. For example, if the commit message was MDSD-3891 - demo of CI, then MDCMS

will check if issue key MDSD-3891 maps to an MDCMS task or subtask and if it does, that

will be assigned to the object requests.

*KACE - The project/task/subtask will be based on the KACE Service Desk number in the

commit message. For this to work, the developer must enter the KACE number at the very

beginning of the commit message and the workitem must have already been exported into

MDCMS.

*SNOW - The project/task/subtask will be based on the ServiceNow Task ID in the commit

message. For this to work, the developer must enter the ServiceNow Task ID at the very

beginning of the commit message and the task must have already been exported into

MDCMS.

*LAST -  the Project/Task/Subtask for the most recently installed object of the same name

and attribute will be used. Recommended when for the target level of a Merge (completion

of a Pull-Request)

The use case for this is if requests for higher MDCMS environments are triggered by pull-

requests into higher branches for a Git Repository.

*MD - The project/task/subtask will be based on the MDCMS Project, Task and Subtask

values. For this to work, the developer must enter the information at the very beginning of



Continuous Integration from Git within MDCMS - Midrange Dynamics Wiki      9/16/24, 9:04 PM

© Copyright by Midrange Dynamics 2024       Page 10 / 15

the commit message. The format is

PROJECT-TASK.SUBTASK: The : is the delimiter for the end of the information to parse.

MDCMS then takes the value until the : or final - for the project id. If the project is valid,

MDCMS takes the values between the final - and the : or final . for the Task number. If the

task is valid, MDCMS takes the values between the final . and the : for the subtask number.

The Task Number and Subtask Number are generally optional.

Task The task to assign to the Object Requests. Leave blank if directly for a project, or if the

project is blank or has a special value.

Subtask The subtask to assign the Object Requests. Leave blank if directly for a project or task, or if

the project is blank or has a special value.

Generate RFP True - the object requests will be assigned to a new RFP (if not already checked out)

False - the object requests will not be assigned to an RFP

If the object request already exists from the same branch, it will be automatically updated to

the newly committed version.

RFP Description If assigned to an RFP, what the description of the RFP should be.

*COMMITMSG - use the Git commit message

*TASK – use the task description

Auto-Request

Dependencies

If requesting source for IBM i objects, MDCMS can automatically request any dependencies

for recompile. This includes dependencies impacted by file changes, module changes or

copybook changes. The source used for the recompile must exist in the source migration

path, based-on path or source search template on the target partition.

Auto-Create in

Dev Lib

If requesting source for IBM i objects, MDCMS can automatically attempt to compile the

requested objects as well as the dependencies into the development library.

If the target of the source is a source member, the stream file will be copied to the source

file of the same name in the developer’s work library.

Auto-Submit

RFP

If true, MDCMS will auto-submit the RFP once the objects have been requested, even if the

Auto-Submit parameter on the level is set to false

Pipeline Attribute If an attribute of type *PIPE is entered in this parameter (content-assist can be used), an

object request will be automatically generated for that attribute for the same RFP as for the

committed objects.

This is typically used to trigger build, test, deploy or approval jobs on pipeline servers.

Pull-Request

Location / Level

MDCMS can automatically generate a Pull Request from the branch that commits were

pushed to, for a merge into a target branch. For this to occur, the repository definition must

include the API Server ID and the Partition Location ID and Level number must be entered



Continuous Integration from Git within MDCMS - Midrange Dynamics Wiki      9/16/24, 9:04 PM

© Copyright by Midrange Dynamics 2024       Page 11 / 15

here.

When MDCMS has completed the deployment of the objects into the defined target level on

the defined target location, the pull-request will be generated, if a pull-request from the

same branch isn’t already pending.

Pull-Request

Target Branch

The name of the branch that the changes should be merged into. If blank, the designated

Main branch of the repository will be used.

Map Repository Files to MDCMS Attributes

When pushing files to be requested as IFS/Remote Objects, the CI processor does the following to determine the

MD Attribute to use for a file: 1. look for a path/file name pattern match in the Attribute Mapping table for the Git

Repository 2. use the Default MD Attribute defined for the CI definition

When pushing files to be requested as Source for System Objects, the CI processor does the following to

determine the MD Attribute to use for a file: 1. look for a path/file name pattern match in the Attribute Mapping

table for the Git Repository 2. if Map to IFS Path is true, check MDCMS Object History for most recent install of

the file into the mapped path 3. check MDCMS Object History for most recent install of the file into the same

application/level 4. check MDCMS Object History for most recent install of the file into the same application,

regardless of level 5. check MDCMS Object History for most recent install of the file, regardless of application or

level 6. in the MDCMS Attributes table, try to find a matching combination of Folder and Dft Source Type, or

matching combination of Source Library, Source File and Dft Source Type to get the object type. If found, check

for a reusable command for the object name and type and otherwise use the first matching MDCMS Attribute 7.

use the Default MD Attribute defined for the CI definition

Define Attribute Mapping for the Git Repository

If certain path/file name exceptions exist that result in the wrong attribute being used or if certain files should be

omitted, Attribute Mapping is used to define the results. Select option Attribute Mapping for the Git Repository.

Appl The target application that the mapping relates to. A different mapping record can exist for each

application targeted by CI definitions.

Path A specific path from the root of the repository or a generic pattern for the path. The path value

doesn't include the name of the file itself

File Name A specific file name or a generic pattern for the file name

MD

Attribute

The attribute that a match should map to

*NONE - omit any files that match



Continuous Integration from Git within MDCMS - Midrange Dynamics Wiki      9/16/24, 9:04 PM

© Copyright by Midrange Dynamics 2024       Page 12 / 15

Define the MDCMS WebHook on the Git Server

In order to trigger the push of objects from Git to MDCMS, a WebHook needs to be defined on the Git server.

Instructions for Azure DevOps, Bitbucket, GitHub or GitLab when an API Server ID is defined for the

Repository

1. Within MDOpen, open the Git Repositories view

2. Right-Click on the Repository ID and select option Webhooks

3. Click the Create/Update Webhooks button

If an error occurs, check the API Server log for the given server ID

Instructions for Azure DevOps without an API Server ID

1. Log into the Azure server with a user that has administrative rights for the DevOps project containing the

Repositories to trigger from.

2. Go into the Project Settings for the Project

3. Click on the Service hooks link

4. Click the + button to add a subscription

5. Select Web Hooks from the list and click Next

6. Select the Code pushed Trigger event from the list

7. Select the specific or (Any) Repository, Branch and group member and click Next

8. Enter the URL for the MDCMS Webhook. It will be the Endpoint defined in the MDCMS REST APIs settings +

/<mdcms instance> + /azure/git/webhook

For example, https://devsys.mycompany.com/mdcms/azure/git/webhook

9. The optional settings should be left at the default values

10. Click the Finish button

Instructions for Bitbucket

1. Log into the Bitbucket server with a user that has administrative rights.

2. Go into the Settings for the Repository

3. Click on the Webhooks link

4. Click the button Add webhook

5. Enter a Title (such as MDCMS)

6. Enter the URL for the MDCMS Webhook. It will be the Endpoint defined in the MDCMS REST APIs settings +

/<mdcms instance> + /bitbucket/webhook

For example, https://devsys.mycompany.com/mdcms/bitbucket/webhook

https://devsys.mycompany.com/mdcms/azure/git/webhook
https://devsys.mycompany.com/mdcms/bitbucket/webhook


Continuous Integration from Git within MDCMS - Midrange Dynamics Wiki      9/16/24, 9:04 PM

© Copyright by Midrange Dynamics 2024       Page 13 / 15

7. It is recommended to Enable request history collection so that Git-side troubleshooting can occur during the

initial attempts

8. Ensure Repository push is selected for Triggers

9. Click the Save button

Instructions for GitHub without an API Server ID

1. Log into the GitHub server with a user that has administrative rights.

2. Click on the Settings tab for the Repository

3. Click on the Webhooks link under Options

4. Click the button Add webhook

5. Enter the URL for the MDCMS Webhook. It will be the Endpoint defined in the MDCMS REST APIs settings +

/<mdcms instance> + /github/webhook

For example, https://devsys.mycompany.com/mdcms/github/webhook

6. Ensure Just the push event is selected for Triggers

7. Click the button Add webhook

Instructions for GitLab without an API Server ID

1. Log into the GitLab server with a user that has administrative rights.

2. For a given Project, hover the cursor over the Settings item in the sidebar and then Click on Webhooks

3. Enter the URL for the MDCMS Webhook. It will be the Endpoint defined in the MDCMS REST APIs settings +

/<mdcms instance> + /gitlab/webhook

For example, https://devsys.mycompany.com/mdcms/gitlab/webhook

4. Ensure the Push events is selected for Triggers

5. Click the button Add webhook

Troubleshooting

There is logging available at every step in the CI process to aid in problem resolution.

Git Webhook Deliveries

The first place to start troubleshooting or view occurred activity is to use option Git Webhook Deliveries in

MDOpen. Each occurrence of the MDCMS git webhook invocation will be listed. For each row, any requested

objects can be listed or the delivery can be easily repeated.

If an expected entry does not exist, then review the following locations:

Git Server

https://devsys.mycompany.com/mdcms/github/webhook
https://devsys.mycompany.com/mdcms/gitlab/webhook


Continuous Integration from Git within MDCMS - Midrange Dynamics Wiki      9/16/24, 9:04 PM

© Copyright by Midrange Dynamics 2024       Page 14 / 15

On the Azure, Bitbucket, GitHub and GitLab servers, the existing WebHook can be clicked on in order to

view/repeat a recent request and response payload

MDCMS REST API Server

Under Settings→Logging within MDCMS:

Log File MDCMS/LXERRLOG contains any errors in invoking a REST API

Log File MDXREF/MDDFREP contains every transaction received from the MDCMS WebHook for Git along

with how the URL and branch was mapped.

MDGIT service

The processing of the Git contents is passed from the WebHook job to the MDGIT service. The java log for this

service can be reviewed for activity and exceptions.

Best Practices for using Git with MDCMS

1. The Git Repository should be structured so that it is possible for MDCMS to uniquely identify the correct

attribute to use for every pushed file. Create Attribute Mapping entries to ensure the correct attributes will be

assigned.

2. The Git Repository should contain a main branch reflecting the production level code.

3. The Git Repository should contain a QA branch reflecting the QA level code.

4. All code changes should be performed in a feature branch that is tied to an MDCMS Task. To minimize

developer effort, the branch name should equal the PROJECT-TASK name (example: MYPROJ-123).

5. Publish the feature branch before making any changes.

6. Define the Developer Library Naming template for the checkout level to be a combination of the Project and

Task.

7. Define the feature branch CI with the following values:

Branch Opt = Not Main Branch

Project = *BRANCH

Generate RFP = true

If for Source for IBM i Objects, set Auto-Request Dependencies to true

If for Source for IBM i Objects, set Auto-Create in Dev Lib to true

Pull-Request Location = local location

Pull-Request Level = target level

Pull-Request Target Branch = (name of QA branch)

8. Define the Developer Library Naming template for the QA level to be a static library and folder name.



Continuous Integration from Git within MDCMS - Midrange Dynamics Wiki      9/16/24, 9:04 PM

© Copyright by Midrange Dynamics 2024       Page 15 / 15

9. Define the QA branch CI with the following values:

Branch Opt = Specific Branch

Specific Branch = (name of QA branch)

Set Level to level number of the copy of QA on the Dev partition for the Application

Level is Target of a Merge = true

Project = *LAST

Generate RFP = true

If for Source for IBM i Objects, set Auto-Request Dependencies to true

If for Source for IBM i Objects, set Auto-Create in Dev Lib to true

Pull-Request Location = local location

Pull-Request Level = target level

Pull-Request Target Branch = (name of main branch)

10. Define the Developer Library Naming template for the production level to be a static library and folder name.

11. Define the main branch CI with the following values:

Branch Opt = Main Branch

Set Level to level number of the copy of production on the Dev partition for the Application

Level is Target of a Merge = true

Project = *LAST

Generate RFP = true

If for Source for IBM i Objects, set Auto-Request Dependencies to true

If for Source for IBM i Objects, set Auto-Create in Dev Lib to true

12. Create a local Distribution Level from the checkout level to the QA level with the Local Distribution Reason set

to N=Non-Git Requests. MDCMS will automatically place any object requests that didn't originate from Git in a

Send RFP to then merge with the RFP that comes from Git after the Pull-Request is completed. Do the same

from the QA level to the production level.

13. Ensure all Git user id's are mapped to MDSEC user id's so that the correct user is indicated on the requests

and RFP.

14. A full copy of all source code should still be on the development partition for recompiling, debugging, analysis

and emergency use.


