‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

User & Reference Guide

MDRest4i

REST Framework & SDK
from

Midrange Dynamics

Version 12

Published April 24, 2024

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 1/167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

Table of Contents

1 PRODUCT OVERVIEW 11
2 ARCHITECTURE 11
2.1 MASTER TEMPLATES 12
2.1.1 Consumer (Client) Template 12
2.1.2 Producer (APIl) Template 12
2.2 MDREST4I MODULES 13
2.3 COPYBOOKS 13
2.4 MDREST4I RPGLE HEADER SPECIFICATIONS 13
2.4.1 MDRest4i System Binding Directories 13
2.4.2 Client Specific Binding Directory 14
2.4.3 Activation Groups 14
2.4.4 Large Attachments and Payloads 14
3 MDREesT41 SDK GENERATOR COMMANDS 14
3.1 MDRGENPRD — GENERATE PRODUCER STUB 14
3.1.1 Custom copybook logic for specific subroutines (z_ProcGet etc): 20
3.1.2 Custom copybook logic for generated Providers 20
3.1.3 Custom binding directory 21
3.2 MDRGENCNS — GENERATE CONSUMER STUB 21
4 MDREsT41I SDK GENERATOR REST APIs 24
4.1 MDRGENXAPI— GENERATE MDREST4I REST SERVICE OR CONSUMER FROM SWAGGER 24
4.1.1 MDREST4i SWAGGER/Open APi MDRGENXAPI generator extensions 24
4.1.1.1 x-Ixrgen extension 24
4.1.1.2 Schema parameter attribute specifications: 27
4.1.2 Numeric field format mapping between SWAGGER and RPGLE 29
4.2 MDRGNAPI— GENERATE API OR CLIENT PROGRAMS WITH SCHEMA-BASED PROCEDURES 29
4.3 MDRSCHEMA — GENERATE JSON SCHEMA FROM JSON 30
4.4 MDRFIELDS — RETURN THE DATABASE SCHEMA OF SPECIFIED FILE 34
4.5 DSPSRCMBR — DOWNLOAD THE SPECIFIED SOURCE MEMBER 35
4.6 MDRCHK — CHECK AN OBJECT’S EXISTENCE 35
4.7 GENERATED SWAGGER EXAMPLES 35
5 MDREST4I PAGING IMPLEMENTATION 38
5.1 ADDITIONAL PAGINATION HEADERS IN HTTP SERVER CONFIG 38
5.2 PAGINATION LOGIC IN THE MDREST4I SERVICE COPYBOOKS 39

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 2/167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

5.3 LoGICIN THE REST CONSUMER MODULE FOR PAGINATION 40
6 V12 TOKEN MANAGEMENT 42
6.1 MRDCREDX - TOKEN CREDENTIALS STORE 44
6.2 MRDENCRX—MDREST4I SDK CREDENTIALS STORE |/O MODULE 44
6.3 MRDCREDXR — TOKEN MANAGEMENT MODULE 45
6.3.1 CrtHS256Token () 45
6.3.2 CrtPAToken () 46
6.3.3 CrtRS256Token() 47
6.3.4 RefHS256Token() 48
6.3.5 ValidateToken () 48
6.3.6 getCNSToken() 49
6.4 TOKEN MANAGEMENT REST API's 49
6.4.1 MRDCREDXA - Issue a new token using HS256 algorithm 50
6.4.2 MRDCREDXA - Issue a new token using RS256 algorithm 51
6.4.3 MRDCREDXA - Issue a personal access token 53
6.4.4 MRDCREDXA - Validate the token using client Id and application ID 54
6.4.5 MRDCREDXA - Update JWT information 55
6.4.6 MRDCREDXA - Delete Credentials Store Entry 56
6.4.7 MRDCREDXB - Retrieve the token using client Id and application ID 57
6.4.8 MRDCREDXB - Refresh JWT token 57
6.49 MRDCREDXM - Retrieve all fields from MRDCREDX 58
6.4.10 MRDCREDXM — Insert or update credentials into MRDCREDX 58
6.4.11 MRDCREDXM - Delete Credentials Store 60
7 MDREST41 CODING STANDARDS 60
8 MDREST4I STANDARD LOGGING REST API USING A PHYSICAL FiLE (MDRLOGS) 61
8.1 MDRLOGS — MDREST4I LOGGING DATABASE FILE 61
8.2 LOGGING FLOW FOR A REST APl PROGRAM 62
8.3 COMPONENTS 62
8.4 VARIABLES USED TO ENABLE LOGGING TO MDRLOGS 64
8.5 PROCEDURES 64
8.6 USEFUL DATA QUEUE UTILITIES 66
8.6.1 Display current messages on a data queue 66
8.6.2 Display the Attributes of a data queue 66
8.6.3 Display the messages on a data queue 66
8.6.4 Clear all messages in a data queue 66

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 3/167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

9 LOGGING CONSUMER IN THE DB FILE (MDRLOGS) 66
10 MDREST4I STANDARD LOGGING USING THE IFS 66
10.1 LOGGING THE REST SERVICE USING THE IFS 66
10.2 LOGGING THE REQUEST/RESPONSE IN REST CONSUMER 68
10.2.1 Appending to same IFS log file — 70
10.3 LOGGING THE REQUEST/RESPONSE IN SOAP CONSUMER 70
11 CusTtom LOGGING 70
11.1 REST CONSUMER LOGGING 70
11.1.1 LXRCLTLOG File 71
11.1.2 Field Details: 71
11.2 REST PRODUCER/SERVICE LOGGING 71
11.2.1 LXRSRVLOG File 71
11.2.2 Field Details: 72
12 MDREST4 EXCEPTION HANDLING 72
12.1 INDICATORS AND GENERAL INFO 72
12.2 EXCEPTION HANDLING IN PROVIDERS 72
12.2.1 LXRRESTC Monitor Function 72
12.2.2 LogCriticalError Customizable Function 73
12.2.3 Exception Log File 73
12.3 PURGING THE EXCEPTION LOGS (USING IBM JOB SCHEDULAR) 74
13 HTTP HEADERS IN MDREST4I 74
13.1 USING IN-BOUND HEADERS IN THE HTTP REQUEST FOR A PROVIDER 74
13.2 ADDING HTTP HEADERS TO A MDREST41 APl PROVIDER RESPONSE 74
14 MDREsT4I DATA AREA SETTINGS 76
14.1 LXRSRCDTL 76
15 UPGRADE V8 AND V11 TO V12 PROGRAMS 76
15.1 UPDATE REST APIS AND CONSUMER PROGRAMS TO V12 77
15.1.1 MDRUPDVER Command 77
15.2 Fix “FOR” LOOPS IN WHEN EXTRACTING JSON VALUES WITH JPATH... 78
15.2.1 MDRFIXIDX Command 78
15.3 V8710V12 - MANUALEDITS TO EXISTING CODE 79
15.3.1 Consumer Code 79
15.3.2 Producer Code 81
15.4 V11710V12—MANUALEDITS TO EXISTING CODE 83
15.4.1 Consumer Code 83

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 4/167

‘ MIDRANGE DYNAMICS

providing innovative IBM i solutions

MDRest4i User & Reference Guide

15.4.2 Producer Code 84
16 MDCMS INTERFACE 87
16.1 OVERVIEW 87
16.2 SETUP STEPS 87
16.2.1 Create an Environment in SDK Documenter 87
16.2.2 Create MDCMS Attribute for OAPI Specifications 88
16.2.3 Create “Developer Library Naming Template” in MDCMS for SDK Console 89
16.2.4 MDRPROM — MDRest4i SDK Promotion command 90
16.2.5 SDK Console Setup for MDCMS Interface 91
16.3 PROMOTION STEPS 92
MDREST4| FUNCTION/VARIABLE REFERENCE 93
17 REST CONSUMER HANDLING 93
17.1 CoNSUMER (REST CLIENT) PROCESS FLOW 93
17.2 CONSUMER FUNCTIONS 94
17.2.1.1 AddhttpHeader 94
17.2.2 BuildRequest 94
17.2.3 CloseDown 94
17.2.4 FixReprocess 94
17.2.5 GetAttachments 94
17.2.6 GetBody 94
17.2.7 GetErrorWarnings 95
17.2.8 GetHdr 95
17.2.9 GetAllHdr 96
17.2.10 GetReqgBody 96
17.2.11 Initialize 96
17.2.12 LoadRspHdrToDB 96
17.2.13 LoadReqHdrFromDB 97
17.2.14 LoadQryParmFromDB 97
17.2.15 MemCleanup 98
17.2.16 SetReqgBody 98
17.2.17 WritelFSFile 98
17.3 BuILD REQUEST AND PROCESS RESPONSE VIA DB FILE 99
17.4 UseruL CONSUMER VARIABLES 99
17.4.1 Consumer Timing Variables 102
Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 5/167

‘ MIDRANGE DYNAMICS

providing innovative IBM i solutions

17.4.2

Global Indicators

17.5 CONTROLLING AUTHENTICATION IN CONSUMERS

17.6 PROXY HANDLING

18 REST PRODUCER (API) HANDLING

18.1

PRODUCER PROCESS FLOW

18.2 MDREST4| PRODUCER SWITCHES

18.2.1
18.2.2
18.2.3
18.2.4
18.2.5
18.2.6
18.2.7
18.2.8
18.2.9
18.2.10
18.2.11
18.2.12
18.2.13
18.3

LXR_CheckParms
LXR_Custominit
LXR_CustomExit
LXR_LogService
LXR_ProcGet
LXR_ProcPut
LXR_ProcPost
LXR_ProcPatch
LXR_ProcDel
LXR_SetMethod
LXR_setParms
LXR_SendSchema
LXR_SendSchemaManual

IMPORTANT /CUSTOMIZABLE SUBROUTINES IN PRODUCER PROCESSING

18.4 PRODUCER FUNCTIONS

18.4.1
18.4.2
18.4.3
18.4.4
18.4.5
18.4.6
18.4.7
18.4.8
18.4.9
18.4.10
18.4.11
18.4.12
18.4.13
18.4.14

AddAttachment()
AddHdr()
CrtUsrSpc()
extractQryPrms
GetAuth()
GetHdr()
GetPathParm
GetReqBody
LoadReqHdrToDB
LoadQryParmToDB
LoadRspHdrFromDB
RsplsonfFile ()
rtnHeader()
SetHttpStatus()

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com

MDRest4i User & Reference Guide

102
104
105
106
106
106
107
107
107
107
108
108
109
109
109
109
110
110
110
110
111
111
111
112
112
113
113
115
115
116
116
117
117
117
118

6/167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

18.4.15 ValidateToken() 118
18.4.16 wlogSRV() 118
18.4.17 WritelFSFile() 119
18.4.18 wx() — Write XML tags and value 119
18.4.19 x()— Write XML tags and value 119
18.5 DOWNLOADING ATTACHMENTS IN REST SERVICE 120
18.5.1 Default IFS path setting 120
18.5.2 Saving IFS files in non-default folders 120
18.5.3 Pre-requisites for receiving the IFS files in REST service. 120
18.5.4 Loading JSON request body/sending response via DB file 121
18.6 USEFUL PRODUCER VARIABLES 122
18.6.1 Important Compiler Directive Switches: 122
18.6.2 Important Pointer Variables: 122
18.6.3 Important Indicator Variables: 122
18.6.4 Important arrays: 124
18.6.5 Important data Variables: 124
19 JSON HANDLING 125
19.1 JSON READING FUNCTIONS 125
19.1.1 GetJsonStr 125
19.1.2 GetRootNode 126
19.1.3 JGetElementV 126
19.1.4 JGetArrayldx/ JGetArrayDim 126
19.1.5 JpathN 127
19.1.6 JpathU 128
19.1.7 JpathV 128
19.1.8 JpathVLong 129
19.1.9 Jpathz 129
19.1.10 JSONSAX 130
19.2 JSON WRITING FUNCTIONS 131
19.2.1 addBool() 131
19.2.2 addChar() 131
19.2.3 addCurr() 132
19.2.4 addDeci() 132
19.2.5 addintr() 132
19.2.6 addNumber() 133

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 7/167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

19.2.7 addTimestamp() 133
19.2.8 beginArray() 134
19.2.9 beginObject() 135
19.2.10 endObject() 135
19.2.11 endArray() 135
19.2.12 wilong() 135
19.2.13 w() 136
19.3 JSON UTILITIES 136
19.3.1 CreateJSONF 136
19.3.2 ClearJSONF 136
19.3.3 cleanTree 137
19.3.4 DeleteJSONF 137
19.3.5 GetJsonFromDBF 137
19.3.6 JsonFromDB 138
19.3.7 JsonToDB 138
19.4 AUTOMATED PARSING AND WRITING OF JSON USING MDRJSONF FiLE 139
19.4.1 JSON Parsing Example 139
20 XML HANDLING 139
20.1 XML WRITING FUNCTIONS 140
20.1.1 wx() 140
20.1.2 x() 140
20.2 XML READING FUNCTIONS 141
20.2.1 XGetArrayldx 141
20.2.2 XGetAttr 142
20.2.3 XGetPathVv 142
20.2.4 XGetValue 142
20.2.5 XGetXMLValue 143
20.2.6 XMLSax 144
20.2.7 XMLSaxF 144
20.2.8 XMLSaxUs 144
20.2.9 XMLSaxUSE 145
20.2.10 XRemovelndex 146
20.2.11 XRemovePath 146
20.3 XML UTILITIES 146
20.3.1 CleanXML 146

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 8/167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

20.3.2 XSearchNameSpace 147
20.4 UseruL XML VARIABLES 148
21 IFS HANDLING 148
21.1 FiLE HANDLING FUNCTIONS 148
21.1.1 getErrorNo 148
21.1.2 iClose 149
21.1.3 iFileHandle 149
21.1.4 iFileName 149
21.1.5 iFilePath 149
21.1.6 iOpenA 149
21.1.7 iOpenN 150
21.1.8 iOpenR 150
21.19 strError 150
21.2 IFS DATA WRITING FUNCTIONS 150
21.2.1 appendIFS 150
2122 W 151
21.2.3 iWs 151
21.2.4 iWnb 151
2125 iX 152
21.2.6 writelFS 152
21.3 IFS DATA FUNCTIONS 153
21.3.1 iReadln 153
21.3.2 iReadNb 153
21.3.3 readlIFS 153
21.4 ReAD/WRITE POINTER MOVEMENT FUNCTIONS 154
21.4.1 iShiftA 154
21.4.2 iShiftL 154
21.4.3 iShiftR 155
22 LANGUAGE TRANSLATION FUNCTIONS 155
22.1 CONVERT 155
22.2 SETCONVERT 155
22.3 ENDCONVERT 156
23 GENERAL UTILITY FUNCTIONS 157
23.1 GLOBAL FUNCTIONS 157
23.1.1 Cap 157

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 9/167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

23.1.2 CountParms 157
23.1.3 DecodeURL 157
23.1.4 DetermineParm 158
23.1.5 EditN 158
23.1.6 EncodeURL 158
23.1.7 PCode 158
23.1.8 SQLMsg 159
23.1.9 Upcase 159
23.2 CGI FuNCTIONS 159
23.2.1 CgiGetEnvironmentVariable 159
23.2.2 CgiStandardRead 159
23.2.3 CgiStandardReadl 160
23.2.4 CgiStandardWrite 160
23.2.5 CgiStandardWritel 160
23.2.6 CgiConvertToDbFile 160
23.2.7 Getenv 161
24 HTML HANDLING 162
24.1 HTML WRITING FUNCTIONS 162
24.1.1 HSetValue 162
24.1.2 HWrite 162
24.1.3 HWritelLn 162
24.1.4 HWriteSection 163
24.2 HTML READING FUNCTIONS 163
24.2.1 HGetEnv 163
24.2.2 HGetQuery 163
2423 HLoadHTML 163
24.2.4 HReceive 164
24.2.5 HReset 164
24.2.6 HUnpack 164
25 CSV FUNCTIONS 164
25.1 csv 164

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 10/ 167

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

Product Overview

MDRest4i uses a direct communication protocol to an Apache / IBM Http Web Server enabling your IBMi to
become a powerful application server using the latest industry standards.

MDRest4i is comprised of a series of RPG modules combined using ILE Binding directories by use case, into a
cohesive framework, for building RPG consumer and producers for both REST and Web Services over HTTP and
SOAP.

LOW CODE DEVELOPMENT FOR REST API's AND CONSUMERS

Code Frameworks : Code Generators : RPG Programmer Adds:
(MDReSt4i iCore) (MDRest4i SDK)

—— —

Calls to Existing Code

Standard Code Templates
Parsing Functions

Data Translation/Conversion
Encoding/Decoding
Encryption/Decryption
Authentication

Parameter Handling
JSON/XML Building Functions
IFS Handling

Error Handling

Standard Headers

Custom Headers

Standard Responses

Custom Responses

OAuth2, OIDC, JIWT

Qualified Data Structures
Required Functions

Tailored Parameter Handling
SQL Statements

MDRest4i RPGLE

Custom Message Text Modules

JSON Building Logic
JSON Parsing Logic
Tailored Code Structure
Tailored Error Handling

Standard SOAP and REST templates for Both Client as well as Server in RPG are provided with the framework
to kick-start web services development. The Tutorial Document shows how to build a service using the
supplied templates.

Architecture

REST4l APl & CONSUMER RPGLE FRAMEWORK

Your API Code
- Logic to process request & response _’A

-SQL or Native |10
- Call existing RPG-10 Build self-contained

- Call or reuse any existing code. RPGLE REST API's or
consumer programs

Rest4i Framework ——>

Copy Books &
Templates

Self-Contained Program

R D,
o/
/)

Restdi Framework Modules
with Callback Extensibility

“ MIDRANGE DYNAMICS

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 11/167

2.1

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

MDRest4i uses a set of interlocking engines that perform a variety of functions. These engines are
implemented as Modules bound in to programs using binding directories, with prototypes exported using
copybooks. Thus making the engines easier to install and use.

Master Templates

To simplify building of Consumers and Producers, two master templates are provided in MDRest4i. The SDK
generators use these to create the programs.

These templates are made up of a combination of modules, copybooks, and binding directories, that control
the standard flow of a producer or a consumer and contain the generic logic suitable for each type, such as
writing the log files, extracting the request etc.

2.1.1 Consumer (Client) Template

The generic flow of a REST consumer is handled by module MDRCNSM. The diagram below shows the generic
flow of a REST Consumer/Client.

HOW REST WORKS — REST CLIENT (Consumer)

RESTful Client

Build Request
Set Parameters, Build
JSON-POST-800Y

Request (GET, POST...) Request Processing
Set URL, SET Headers,
Authentication, Send Request

Rest API
(JSON) Response
“ MIDRANGE DYNAMICS

For the full details of a consumer template see - REST Consumer Handling below.

2.1.2 Producer (APl) Template

The generic flow of a REST producer is collectively handled by the copy books LXRRESTC, MDRESTDFN,
LXRRESTP. The diagram below shows the generic flow of a REST Service.

HOW REST WORKS — REST SERVICE (API)

/" RESTful Service (API)

Request (GET, POST...) Request Handling
Which HTTP Methad /P
Parameters, Al

Rest Client

I N

Request Processing

Parsing, Vialidation, Business
Logic, Database 1/0, Calls_

(ISON) Response

“ MIDRAMNGE OYMNAMICS
g b | 23282

For the full details of a producer template see - REST Provider/Service Handling below.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 12 /167

&

2.2 MDRest4i Modules

2.3

2.4

MIDRANGE DYNAMICS

providing innovative IBM i solutions

MDRest4i User & Reference Guide

MDRest4i has set of ILE modules exposed as exported procedure Interfaces — the details of which are
documented in the MDRest4i Function/Variable Reference in this document.

LXRBITS Bit Level Functions

LXRCSV CSV Functions

LXRGLOBAL Global Functions

LXRHTML Common HTML Functions
LXRIFS IFS Functions

MDRIJSONY JSON Functions

LXRLANG Language Functions

MDRCNSM REST Master Consumer Module
LXRXML XML Functions

All the engines can go in the same binding directory. The details of each function contained in the MDRest4i

Engines can be found in the MDRest4i Function Reference Guide.

Copybooks

Copybooks are used to import the procedure interfaces and various other commonly used declarations into
MDRest4i programs. Each MDRest4i module has its own copybook with all the procedure definitions, for rapid
inclusion into your code. These copybooks can be found in MDRST/QRPGLESRC.

The MDRest4i programs will include only the copybooks for the engines that are being used into the PGM
Stack and the ILE binder will ignore the functions that are not defined. In addition, Comments are only

included in the object when “LXR_CommentInc” is Defined.

MDRest4i RPGLE Header Specifications

MDREST4i uses header specifications to bind in the necessary framework modules, set activation groups,

increase payload size and specify decimal separators.

24.1 MDRest4i System Binding Directories

This will include the MDRest4i System service program.

This will also include APIs that are used by the MDRest4i system:

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com

CGI APIs

IP Socket APIs

MDRest4i System APIls

IBM DCM APi’s

MDRest4i global functions
MDRest4i database functions

13 /167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

3.1

providing innovative IBM i solutions

One or more statements are added by the generators to include the necessary binding directories depending
on the required operations in the REST service or consumer. Here are examples of a provider and consumer
generated by MDREST4i:

MDRGENPRD:Provider/API

MDRGENCNS:Consumer

24.2 Client Specific Binding Directory

This binding directory is for anything pertinent to a specific client. The empty binding directory MDRUSERBND
is supplied with the product and is added to all the programs/consumer code generated via the SDK. It can be
used to add the common modules and service programs. Please refer section “Custom binding directory” for
more details.

243 Activation Groups

The REST service generally uses multiple modules and therefore DFTACTGRP(*NO) and ACTGRP(*NEW) are
added by the SDK at the top of the program. You may change it to named or *CALLER activation group if
required.

You will also see the following commented out code:

This code when uncommented will switch the system to use a, instead of a . as the decimal separator.

244 Large Attachments and Payloads

If you are developing the REST APl or consumer which is expected to receive large attachments (i.e. more than
5MB in size), you will have to add below statement in H-spec. Please refer “Downloading attachments in REST
service” section in this document for further technical insight on large attachments.

MDRest4i SDK Generator Commands

The MDRest4i SDK Generator commands build and compile consumer and service(producers) RPGLE stubs
based upon parameters provided by the user. MDRest4i iCore has two simple generators which can be invoked
as commands. MDRest4i SDK web UI/SWGGER editor has more advanced generators that can be invoked as
REST API’s. In both cases, once generated the developer can then add all the necessary business logic to make
the service/consumer fully functional.

MDRGENPRD - Generate Producer Stub

From the IBMi command line execute the following:

e ADDLIBLE MDRST & press enter

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 14 /167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

e MDRGENPRD & press F4

The following screen will appear:

Figure 6 — MDRest4i Generator for Producer/Service/API

There are some additional parameters which are shown on the basis of the selected service type. If “Y” is
entered on either of “Get”, “Post”, “Put”, “Patch”, “Delete”, below parameter is displayed. You can use this
parameter to control about how you want to send the response. The value “USR” means you have inline logic
to write the response (e.g. use of addchar, adddeci, beginobject, endobject etc functions). The value “DBF”
means the response to be written is pre-loaded in MDRIJSONF file and the APl is expected to read the data and
build the JSON out of it. The value “IFS” means the response to be sent is available in JSON form in an IFS file
as entered on the next parameter and the API should read that content and send the response. When “DBF” is
entered, it opens another parameter where you can specify the library name for “MDRIJSONF” file. Likewise,
when “IFS” is entered, the new parameter is opened to enter the IFS file name with complete path.

Likewise, if “Y” is entered on the request type which take request body (i.e. either of “Post”, “Put”, “Patch”
parameters), below parameter is displayed. This means whether you want to automatically load the response
in an IFS file (i.e. value “IFS”) or load the formatted content in DB file (when the value is “DBF”). The default
value “USR” means continue with the standard parsing so that you can use the “JPathv”, “JPathN” etc
functions to find the value of specific elements. When “DBF” is entered, it opens another parameter where

you can specify the library name for “MDRJSONF” file. Similarly, when “IFS” is entered, the new parameter is
opened for entering the IFS file including complete path.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 15/ 167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

The parameter “Processing Type” is shown when “Y” is typed on “Get Method Required” or “Post Method
Required” or “Put Method Required”. The next parameter is “Include Paging Logic” which is applicable for
“GET” method when “Processing Type” is selected as “D”. When “Include Paging Logic” is selected as “Y”, the
command generates the previous and next page processing logic.

If “D” is entered in “Processing Type” parameter, it will prompt for additional information. The parameter
“Default DB File” and “Library” is for specifying the database file from where the information is to be sent back
as the response (“GET” and/or “POST” request) or the request body will be processed for
“POST”/”PUT”requests. The generator will add the relevant logic for this processing.

If “C” is entered in “Processing Type” parameter, it means the request is to call an external program or a
procedure of the specified module/service program. The additional parameters are therefore presented to
enter the object name, object type and library. The parameter “Object Name” and “Library” is for specifying
the name of the *MODULE, *PGM or *SRVPGM object and its library. When *MODULE or *SRVPGM is entered
in “Object Type”, another parameter is displayed to enter the procedure name. The generator will add the
relevant logic for this processing.

The next entry is “Parm Required?”. When you select “Processing Type” as “N” or “D”, it gets displayed like
below and it only asks whether the query parameters are required in REST service or not.

However, when you enter “Processing Type” as “N”, it gets displayed like below.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 16 /167

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

If you choose “N”, means query parameters are not required, when you select “P” it would assume you
directly want to call the program with the value received from query parameter and therefore it will declare
"p_" prefixed variable name for the entered parameter. The code is generated like below

When you enter “Q” as the value on “Parameter Required?”, it considers that you want to perform some
intermediate calculation on the query parameter received and therefore, it declares another variable with
“w_" prefix and assigns the value of “P_" prefixed before the call and does the reverse after the call. Below is
the code generated for this type of request:

If “Processing Type” is “D” and “Parameter Required?” is set to “Y”, it asks you to enter the parameter names.
Here, you have to only enter the parameter name which should be a field from DB field and specify Y/N on
“Mandatory Y/N” to mark create a program with mandatory or optional query parameter. You can enter
multiple parameters. When the APl will be generated, it will have entered parameters as the mandatory or
optional query parameters.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 17 /167

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

If “Processing Type” is “N” and “Parameter Required?” is set to “Y” or “Processing Type” is “C” and “Parameter
Required?” is set to “P” or “Q”, it asks you to enter the parameter names along with their data types. The
parameter name and Mandatory entries are same as previous type but here, you have to also enter the data
types of the parameters since there is reference from database.

Parameter Description

Target Library Where the source file/member and compiled program will be
placed by the generator

Target Source File The source file where the program source will be saved

Target Source Member Name of the program source member and the name of the
generated program object

Member Text Description assigned to the source and object text
Get Method Required? Y will insert a subroutine for the selected HTTP method in the
Put Method Required? API/Producer

Post Method Required?
Patch Method Required?
Delete Method Required?

Options Method Required?

Data Format J —for JSON format and X - for XML format, default is J

Requestbody Parse Method/ This parameter controls on how you want to process the
Library Name for DBF Request response. The value “IFS” means load the response in an IFS
file, the value “DBF” loads the formatted content in DB file. The
default value “USR” means continue with the standard parsing
so that you can use the “JPathv”, “JPathN” etc functions to find
the value of specific elements. When this entry is “DBF”, you
can specify the library name in the next parameter.

Response Processing Method/ This parameter controls about how to send the response. The
Library Name for DBF Request value “USR” means response is being sent via inline logic to
write the response (e.g. use of addchar, adddeci, beginobject,
endobject etc functions). The value “DBF” means the response
to be written is pre-loaded in MDRIJSONF file and the APl is
expected to read the data and build the JSON out of it. The
value “IFS” means the response to be sent is available in JSON
form in an IFS file and you want to read that content and send

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 18/ 167

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

the response. When this entry is “DBF”, you can specify the
library name in the next parameter.

Processing Type This is applicable for GET, PUT and POST requests. You can
specify whether the target APl is expected to perform DB I/O on
specified file or it would call a program/procedure. The logic
will accordingly be written in the generated member.

Include Paging Logic? This option writes the logic in the necessary subroutines
dedicated to process the next and previous page request.
Please refer “MDRest4i Paging implementation” section in this
document for more details.

Default DB File This parameter is prompted when “Processing Type” is
requested as “D”. The name of database file from where the
API should pick the fields for the output

Library Library where DB file exists

Object Name This parameter is prompted when “Processing Type” is
requested as “C”. The name of Program/module or procedure
can be entered.

Library where *PGM or *MODULE or *SRVPGM object exists
Library

Object Type (i.e. *MODULE, *SRVPGM, *PGM)
Object Type

Name of the procedure for *MODULE or *SRVPGM

Procedure Name

Parm Required? Prompts the user if the query parameters are required in the
API.
List of parameters: If Parm Required has been selected as “Y”, below subroutines
Parameter Name are added to the APl with the standard logic and the developer

Mandat v/N? can make the necessary adjustments according to the
anaator f .
Y requirement:

Length
If the Processing type is not “D” and “Parm Required?” is

selected some value other than “N”, the length, data type and
Decimal Positions decimal position entries (i.e. attributes of the specific
parameter are prompted so that the parameter can be defined
accordingly in the generated program.

Data Type

z_setMethod: This subroutine sends the error when required
parameters are not received.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 19/ 167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

z_setParms: This subroutine is to set the parameter names
(case sensitive) and mark them mandatory/optional.

z_evalParms: This subroutine extracts the parameters from the
query in url and sets them in standard parameters array.

z_checkParms: This subroutine sets the parameter values in
“P_" prefixed parameter variable names and sets the
corresponding “n_" prefixed variable set to *On (i.e. we can
check this indicator later if the parameter has been received or
not). The developer can write his own logic of parameter
handling if required.

The last set “List of parameters” is to provide the parameter
name and whether the parameter is mandatory or optional.
The appropriate code would be added in the generated service
to process and validate these parameters. One point to be
noted is that, if the value is populated for “Default DB File”, the
parameters must come from the file. They could be short field
names or long field names driven by the field text or column
heading (if field text is not found)

3.1.1 Custom copybook logic for specific subroutines (z_ProcGet etc):

There may be a requirement to provide a fixed set of statements in the different subroutines being generated
using this command. An empty copybook per generated subroutine has been provided in QRPGLESRC source
file under MDRST for this purpose.

The statements of each member above will then be copied by the MDREST4i generators (not the compiler)
into the relevant subroutines from (*LIBL/QRPGLESRC) when API/Producers are generated either by
MDRGENRPD or MDREST4i provider APl - MDRGENXAPI.

It is advised therefore that a copy of these is made into a custom library which is then added above MDRST in
the *LIBL whenever MDRGENPRD or MDRGENXAPI are used to build an API.

3.1.2 Custom copybook logic for generated Providers

Copy book *LIBL/MDRUSERCPY is added by MDRGENRPD or MDREST4i provider APl — MDRGENXAPI when a
provider is generated. An empty copybook MDRST/QRPGLESRC.MDRUSERCPY has been provided in source file
under MDRST for this purpose.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 20/167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

3.1.3 Custom binding directory

If you would like to have all the generated APIs include some specific service programs or modules,
MDRGENPRD command and MDRGENXAPI interface adds below statement in all the generated members.

The empty binding directory “MDRUSERBND” is provided in MDRST Library. You can copy this binding

directory in custom library kept above MDRST library and add the necessary modules and services programs.
3.2 MDRGENCNS - Generate Consumer Stub

From the IBMi command line execute the following:

e ADDLIBLE MDRST & press enter
e MDRGENCNS & press F4

The following screen will appear:

Figure 3 — MDRest4i Consumer Generator MDRGENCNS Screen 1

This example using the default values will build a RESTful consumer/client program in RPG.

Parameter Description

Target Library Where the source and compiled program will be placed by the
generator

Target Source File The source file where the program source will be saved

Target Source Member Name of the program source member and the name of the

generated program object

Member Text Description assigned to the source and object text

SSL/Non SSL N to generate a non-secure consumer

Y to copy on the appropriate SSL modules for handling
encryption and SSL

Single or Multiple Service S for a program that contains a single request/call to an
AP|/Service

M for a program that is able top call multiple API’s/Services in a
single program

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 21/167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

Build request body method/ IFS for reading the JSON content available in an IFS file and then
Library name send it as the request body. When “IFS’ specified we need to
specify the complete IFS path (including file name) in the next
parameter.

DBF for sending the content from the DB file “MDRISONF” and
build the JSON. When this entry is “DBF”, you can specify the
library name in the next parameter.

USR means the request body will be created using addChar,
beginObject etc functions manually by the developer.

Parse response method / IFS for writing the request body received in JSON form to an IFS
Library name file. When “IFS” is specified, we need to provide complete IFS
path (including file name) in the next parameter.

DBF for loading the JSON request body in DB file “MDRISONF”.
When this entry is “DBF”, you can specify the library name in the
next parameter.

USR would cause default JSON parsing to happen automatically
and the developer can use JPathv, JPathN etc functions to load
specific JSON elements.

[} Press enter

Figure 4 — MDRest4i Consumer Generator MDRGENCNS Screen 2

1. Page down to see the remaining parameters.

e Page down to see the remaining parameters.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 22/167

&

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

Figure 5 — MDRest4i Consumer Generator MDRGENCNS Screen 3

Parameter Description

HTTP Method G for HTTP GET, P for HTTP PUT, S for HTTP POST, T for HTTP
PATCH and D for HTTP DELETE

Build request body method Request body method (IFS, DBF, USR)

Library Name Library name if requested method is “DBF”.

IFS File for Requestbody IFS file name if request method is ‘IFS”

Parse response method Response parse method (IFS, DBF, USR)

IFS File for Response IFS file name if reesponse method is ‘IFS”.

Library Name Library name response method is “DBF”

URL for Consumer Service THE URL provided by the provider

IFS Path to store the Output Output to save log file from transaction

File name.. Name of the Log file

List of Parameters Parameters and their values. Use a + to add more parameters
up to 20 Parameters are available in the generator command.

The generated code can be viewed in the LIBRARY/FILE specified in the command.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 23 /167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

4.1

providing innovative IBM i solutions

MDRest4i SDK Generator REST APIs

The MDRest4i SDK Generators build and compile consumer and service(producers) RPGLE stubs based upon
SWAGGER definitions submitted to the API’s using a POST method, with the SWAGGER definitions in the
request Body. Once generated the developer can then add all the necessary business logic to make the
service/consumer fully functional.

The SWAGGER definitions can be edited at a very fine-grained level of detail in areas such as:

® Using response field names that are different from column names(less cryptic) of the underlying
database file,
® Selecting a subset of fields from a database file

The SWAGGER definitions can be edited in the MDRest4i SDK Console Ul, SWAGGERHub, SWAGGER.Editor,
and submitted via any POST capable Ul such as SOAP-Ul, POSTMAN, and off course MDRest4i SDK Console
itself.

Copy
Books

e e
)
OPENAP \

MDRest4i
SDK Web Ul

DB2/sQL
Schema
Extraction

RPG Code
Generation

Copybook
Schema
Extraction

SQL

Figure 1 — MDRest4i Accelerator APl Generator

MDRGENXAPI — Generate MDRest4i REST service or consumer from swagger

This API is for generating a REST service or consumer for GET/POST/PUT/PATCH/DELETE methods from a
swagger/OpenAPI specification. The API creates and compiles, the source member in the requested source
file/library combination as supplied in the swagger under x-Ixrgen section. If the supplied JSON has “callType”
set to “path”, the swagger JSON is loaded from the IFS file specified for the “path” label.

’

4.1.1 MDREST4i SWAGGER/Open APi MDRGENXAPI generator extensions
4.1.1.1 x-Ixrgen extension

The request and processing type is controlled by “x-Ixrgen” section which could have below details:

"x-1xrgen": {
"library": "MDRDEMOD",
"srcfile": "QRPGLESRC",
"srclibrary": "MDRDEMOD",
"object": "CREDITLMT1",

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 24 /167

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

“x-ioaction”: “read”,

“x-rspaction”: “assign”,

"reqtype”:”consumer”,

“ssncns”: “Y”,

“lxrpath”: http://mddev.mdcms.ch:2513/skdemo/tstmbrl,

“multi-ccsid”: “Y”,

"jsonregmethod": "USR",
"reqdblib": "MDRDEMOD",
"reqgifspath": "/home/MDRest4i/TSTIFSPRD.json",
"jsonrespmethod": "DBF",
"respdblib": "MDRDEMOD",
"rspifspath": "/home/MDRest4i/TSTIFSPRD.json",

“allownotfound”: true,
“missingentryhandling”: false,
"externalizemainds": "Y",

"rootds": "Y"

Entry Name Purpose/Meaning

library Library where object will be created during compilation. If this parameter is not
found, the srclibrary is used as the object library.

srcfile Name of the source file where source member will be created. If this entry is
blank, the source file is determined from the first 10 bytes of “LXRSRCDTL” data
area from MDRST library.

srclibrary Library name for the source file/member. If this entry is not found, it fetches the
value from 11t to 20t byte position of “LXRSRCDTL” data area from MDRST
library.

object Source member and object is created using this name. If this entry is not provided,
it checks the “operationld” field to see if its length is less than 10 chars. If that’s
the case, it uses operationld for the source/object name. Otherwise, it retrieves
the value of data area “LXRSRCDTL” from MDRSTxx library. The first 10 bytes
contain source file and next 10 bytes contain the library name. It then tries to
fetch the last source member starting with “LXOA” followed by six digit number in
this source file and library. If the member found, it uses the next sequence,
otherwise it creates LXOA000001 as the first object.

» o«

x-ioaction This entry is applicable for “POST” request and it can be set to “*none”, “read”,
“insert”. The value “*none” means don’t write the logic to load the data structure
from the request body. The value “read” means consider the POST service as GET
and load the request body parameters from the database using SQL with the DB
mapping information provided under the request body. The value “insert” means
write the logic to perform insert operation in the database file as per the database
mapping information provided in the request body.

reqtype It must be “consumer” for consumer generation, otherwise, this is ignored

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 25/167

http://mddev.mdcms.ch:2513/skdemo/tstmbr1

MIDRANGE DYNAMICS

providing innovative IBM i solutions

&

MDRest4i User & Reference Guide

ssncns

It is applicable when “reqtype” is set to “consumer”. The expected values are “Y”
or “N”. When “Y” is specified, it creates SSL consumer, otherwise, non-SSL

jwt

“Y” or “N”. this sets on JWT handling and implements the ValidateToken()
procedure in the relevant z_proc[methodxxx] subroutine. It extracts the
“authorization: Bearer” header value

Ixrpath

It is again applicable when “reqtype” is set to “consumer” and this is the path of
the REST service that will be called from the consumer.

multi-ccsid

This parameter can be set to “Y” if the REST service you are generating is expected
to be compiled and executed in different CCSID environments. In this case, it
doesn’t write the actual characters for the curly/square braces, instead it uses
Unicode constant.

jsonregmethod

This parameter controls building JSON. For the consumer, the JSON is built for the
request body and for the REST service, JSON is created for the response. If you
want to automatically send the JSON from an IFS file, the value should be“IFS”.
“DBF” means the JSON parsed content is stored in MDRJSONF file and JSON should
be built from the data in this file. The default value “USR” means continue with the
standard way of building JSON using addChar, beginObject etc functions.

reqdblib

This parameter is only used when “jsonreqmethod” is set to “DBF” and it tells from
where to pick the MDRJSONF file.

reqgifspath

When “jsonregmethod” is set to “IFS”, this parameter is used to pick the IFS file
where the final JSON (i.e. the request body received for the REST service) would be
written. When used with “reqtype” set as “consumer”, the JSON content available
in this IFS file will be read and written as the request body while sending the
request.

jsonrespmethod

This parameter controls on how to parse the incoming JSON. For the consumer,
the incoming JSON is the response from the REST service and that for the REST
service is the request body. Use the value “IFS” to load the JSON in an IFS file,
whereas, the value “DBF” can be used to load the json labels, values in the DB file
named “MDRJSONF”. The default value “USR” means continue with the standard
way of parsing JSON and load the required values using JPathN, JPathV etc
functions.

respdblib

This parameter is only used when “jsonrespmethod” is set to “DBF” and it tells
from where to pick the MDRIJSONF file.

rspifspath

When “jsonrespmethod” is set to “IFS”, this parameter tells the IFS file where the
final JSON (i.e. the response received from the REST service in consumer) would be
written. When used with REST service, the JSON content available in this IFS file
will be read and written as the response to the REST service.

allownotfound

The JSON values for the specific JSON label at the specific path are extracted using
“JPathv” function. If the requested label/path is not found, the function returns
“*notFound”. However, if you expect “*notFound” to be something possibly
coming in JSON, set this parameter to “true” and then “JpathE” function will be
used to extract the value of JSON path which returns blank if the entry is not
found.

missingentryhandling

This parameter is used to apply condition before setting the value to avoid setting
the variable when the value is not found. This is explained below using code
example.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com

26/167

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

externalizemainds This parameter to use declaring the data structure’s definition in the external
copybook. For this we need to set this as “externalizemainds”:”Y”. This parameter
can be use in MDRGNAPI. So we can use this when gentype = “Inline” or
“external”.

rootds This parameter uses for ignoring the rootds name so when we will set is as rootds
to ‘N’ it will ignore not define data structure and add only standalone variables.
This parameter can be use in MDRGNAPI. SO it can be use when gentype is set as
“Inline” or “external”.

X-rspaction This parameter is only meaningful in post type request and it can contain the value
“assign” which means do not write the response.

4.1.1.2 Schema parameter attribute specifications:

type String, integer, number, boolean

x-ibmitype Possible values are “zoned” or “packed” and this parameter is only considered
when type is “number” or “integer”

multipleOf This parameter tells the domain of the values but here it is used to identify the
number of decimal positions. As an example, if the value is “multipleOf”: 0.0001
and the data type is “number”, that means the decimal positions are 4.

maximum This parameter is also considered for identifying the maximum decimal positions
when the data type is “number”. For example, if the maximum is set to 9.9999999,
that means the variable will be declared with 10s,6 (if “x-ibmitype” is set as
“zoned”). Otherwise, it will be defined as 10p, 6.

minimum This parameter is similar to “maximum” above and is used to identify the max
decimal precision when the variable is being declared in the program.

format The possible values for this entry could be “int32” or int64” for “integer” type and
that for “number” type could be “float” or “double. The format “int32” causes the
variable definition with 10i,0 or 10p,0 or 10s,0 depending on whether x-ibmitype is
specified or not. When “int64” is there, the length 10 becomes 20. The format
“float” causes the variable to be defined as 9b,5 whereas double causes 16p,11 or
16s,11 or 9b,5 definition depending on “x-ibmitype”.

Below is the example of schema using above parameters:

"country": {

"type": "array",
"items": {
"type": "object",
"properties": {
"name": {
"type": "string",
"description": "Country Name",
"maxLength": 20
s

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 27 /167

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

"countrycode": {
"type": "number",
"x-ibmitype": "zoned",
"description": "Country Code",
"multipleOf": 8.12345,
"maximum": 524567895678.1567876542
}y
"population": {
"type": "integer",
"format": "int32",

"description": "Country Population"

The generated code will have different data structures declared based on the request body and response
section in the swagger. The relevant subroutines e.g. z_ProcPost for “POST”, z_PROCGET” for “GET” and
“Z_PROCPUT” for “PUT” will have the logic to fetch the data structure subfield values from the request body
using “JPathV” function and appropriate type-casting.

The advantage of this APl is that, it can be used to generate the REST service as well as consumer from the
same swagger. If you would like to generate the consumer for the service generated from the same swagger,
just add “reqtype”:“consumer” as explained above. If the consumer is expected to interact with the SSL REST
service, the parameter “sslcns” should be set to “Y”, otherwise, it should be set to “N”. In consumer
generation, the “BuildRequest” procedure will have the logic to prepare the request body from the variables
declared corresponding to the request body. If the parameter “Ixrpath” is written, it will set the exported
variables “wg_servicepath”, “wg_portNumber” and “wg_hostname” from this path. Otherwise, these three
variables will be set to default/dummy value and the developer has to edit the source to specify the correct
values. If you are generating SSL consumer, you need to check and fix the values of DCM application and SSL

authentication in respective variables under “Initialize” procedure of the generated member.

When the parameter “missingEntryHandling” is set to true or not specified in “x-Ixrgen” block, the retrieval of
variable values from the request body like below:

w_str2 = jpathv('actor.type');
If wistr2 <> '"*notFound';
d BitBucketReq.s actor.s type = w str2;

Endif;

However, when “missingEntryHandling” is set to false in “x-Ixrgen” block, it will not add the conditional block
and the statement will look like below:

d BitBucketReqg.s actor.s type = jpathv('actor.type');

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 28 /167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

4.2

providing innovative IBM i solutions

If the swagger contains multiple paths, it will generate different programs (one program for each path) in
single call to MDRGENXAPI. In case the specific path contains multiple methods (e.g. GET, PUT, POST etc.), the
program will have the logic for all those methods generated in different subroutines.

The information specified in the “requestbody” or “response” section is used to define the data structures at
the top of the generated program. If the same JSON structure is found in requestbody and response sections,
the data structure or standalone variables (as applicable) are defined only once and they are used for both
loading of the request body and writing the response.

4.1.2 Numeric field format mapping between SWAGGER and RPGLE

Using this standard as a guide line,

https://swagger.io/docs/specification/data-models/data-types/

we have implemented this in the MDRGENXAPI generator in the following manner

type format multipleOf maxi.rr.lum defa.\ult zone.d. pack.e.d
specified attribute specified specified

number Y N/A ns,2 np,2
number N 9b,2 10s,2 10p,2
number float Y N/A ns,2 np,2
number float N 9b,5 10s,5 10p,5
number double Y N/A ns,2 np,2
number double N 9b,5 16s,11 16p,11
integer Y N/A ns,0 np,0
integer N 10i, 0 10s, O 10p, O
integer | int32 Y N/A ns,0 np,0
integer int32 N 10i, 0 10s, O 10p, 0
integer | int64 Y N/A ns,0 np,0
integer int64 N 20i, 0 20s, 0 20p, 0

Note: If MultipleOf is given, it will have higher priority regarding the digits after decimal point and in that case,
the format will be ignored

For the moment you must add format and multipleof in the swagger itself. The form Ul ability in is being
implemented V12

MDRGNAPI - Generate API or Client programs with schema-based procedures

REST API called from the MDRest4i SDK Ul when “inline” or “external” is defined in the “Generation Type”
drop down, in the Path Tab of the MDRest4i SDK Ul . It uses SWAGGER input to generate APl or Client
programs with schema-based procedures. However, the parameters X-rspaction, x-ioaction,
missingentryhandling, allownotfound, rspifspath, respdblib, jsonrespmethod, jsonregmethod, reqifspath,
reqdblib, multi-ccdid are not applicable. This APl externalizes the JSON loading and response writing logic into
sub-procedures but there are some pre-requisites. This APl has some extra parameters listed below:

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 29/167

https://swagger.io/docs/specification/data-models/data-types/

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

4.3

providing innovative IBM i solutions

copymember Copybook member name for the definition of data structure and prototypes
externalized in separate module.

copysrcf Source file for copybook member. If not specified, “srcfile” parameter is used.

copylib Library for the copybook member

prcmodule Module name for the exported procedure definitions.

modsrcf Source file for the module

modslib Library for the module

The procedure names are driven from the schema name and “Fetch” is prefixed to the schema name for the
procedure that is supposed to read the JSON (i.e. request body in case of REST service and APl response in case
of consumer). Likewise, “Write” is prefixed to schema name for the procedure which is expected to build the
JSON by using addChar, beginObject etc functions (this happens while processing the response in REST service
or while building the request body in “BuildRequest” procedure of the consumer.

If the Copy member and procedure module is not found, the procedures are created inline within the same
member (i.e. REST API or consumer).

MDRSCHEMA - Generate JSON schema from JSON

This API is used to generate the JSON schema from the sample of JSON response (extracted from the request
body or the response section). There are three optional entries “Ixrschemaname”, “Ixrinputpath”,
“Ixroutputpath” which are supposed to be specified at the root of JSON as required. Below are the rules on
how these entries make the difference in processing.

“Ixrinputpath”: This entry is expected to contain the full IFS path (including the file name) to the JSON file. The
content from this file will be read and the schema will get extracted from this JSON. These rules are applicable
only when the entry “Ixrschemaname” is specified at the root of the JSON, otherwise, “Ixrinputpath” will be
considered as any other label for schema generation and therefore it will become a field name in the extracted
JSON schema.

“Ixroutputpath”: This entry is expected to contain either the full IFS path (including the file name with last four
characters as “.json”) or it can be the IFS folder name (e.g. “/home/MDRest4i/” or “/home/MDRest4i”) and in
this case, the value of “Ixrschemaname” suffixed with “.json” will be appended to make the full IFS path (e.g.
“/home/MDRest4i/mySchema.json” assuming “mySchema” was the value of “Ixrschemaname”). This schema
will be extracted and written to this IFS file. These rules are applicable only when the entry “Ixrschemaname”
is specified at the root of the JSON, otherwise, “Ixroutputpath” will be considered as any other label for
schema generation and therefore it will become a field name in the extracted JSON schema.

“Ixrschemaname”: If this entry is specified, the label “Ixrjson” will be searched in the supplied JSON (if
“Ixrinputpath” entry is not present at the root of the schema or in the JSON available in the IFS file when
“Ixrinputpath” has the IFS file name). If “Ixrjson” is not present and output path is specified, the schema
extractor will report an error. If “Ixrschemaname” is not present, the whole JSON is considered for schema
generation (including “Ixrinputpath” and “Ixroutputpath” if supplied) and it gets labelled with
“generic_schema” at the root of JSON, otherwise, the schema will be labelled with “Ixrjson”.

When the output goes to the IFS file, the APl response will provide two entries “Ixrschemaname”,
“Ixroutputpath” along with the message “schema extracted successfully”. If the “Ixrinputpath” has also been
specified, the same will be available in the response too.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 30/167

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

When the output is not in the IFS file, the response will be the entire schema created from the supplied JSON

using above rules.

Example 1: Below is the JSON supplied as the request body where neither of the three (i.e.
“mdrschemaname”, “Ixrinputpath” or “Ixroutputpath”) are blank.

"lxrschemaname": "myjsonschema",
"lxrinputpath": "/MDREST4i/logs/schemainputl.json",
"lxroutputpath": "/MDREST4i/logs/outputfilel.json"

The content of the “schemainputl.json” file:

{

"repository": {
"website": "www.mysite.com",
"scm": "git",
"name": "bitbucket-hooks-examples",

"yuid": "{1e8809a8-35a9-4d85-99c2-64dl6afc8634}",
"full name": "gableroux/bitbucket-hooks-examples",
"lxrjson": {

"username": "gableroux",

"type": "user",

"display name": "Gabriel Le Breton"

}

Below is the response in SOAPUI or the consumer:

{

"status": "Schema Extracted Successfully",

"inputfile": "Processed Input json
file:/MDREST4i/logs/schemainputl.json",

"outputfile": "Schema output written at:/MDREST4i/logs/outputfilel.json"

Below is the output in IFS file named “outputfilel.json”

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com

31/167

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

Example 2: Below is the example where neither of the three (i.e. “Ixrschemaname”, “Ixrinputpath” or
“Ixroutputpath”) are provided.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 32/167

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

In this case, the schema generator doesn’t search for “Ixrjson” label. Below is the output:

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 33/167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

4.4

providing innovative IBM i solutions

"type": "string",
"examples": ["gableroux/bitbucket-hooks-examples"]
by
"owner": {
"type": "object",
"properties": {
"username": {
"description": "username desc",
"type": "string",
"examples": ["gableroux"]
}y
"type": {
"description": "type desc",
"type": "string",
"examples": ["user"]
}y
"display name": {
"description": "display name desc",
"type": "string",

"examples": ["Gabriel Le Breton\t"]

MDRFIELDS — Return the database schema of specified file

This API returns the JSON schema of the requested database file. The APl expects three query parameters.
Whereas “library and “file” are mandatory and third parameter is “tmpfile” is optional. If we want to remove
the file after processing, please use third parameter with “tmpfile=Y”. In this way API will remove the file after
sending the fields details in JSON.. The API identifies the field details of the file object in the specified library.
Below is the example:

http://yourserver.com/mdrst/mdrfields?library=XAN4CDEM&file=CUSTS
or

http://yourserver.com/mdrst/mdrfields?library=XAN4CDEMZ&file=CUSTS&tmpfile=Y

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 34 /167

http://mddev.mdcms.ch:2545/mdrst/mdrfields?library=XAN4CDEM&file=CUSTS
http://mddev.mdcms.ch:2545/mdrst/mdrfields?library=XAN4CDEM&file=CUSTS

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

4.5

4.6

4.7

providing innovative IBM i solutions

DSPSRCMBR - Download the specified source member

This API returns the IFS file’s source and source code of the source member from the specified source
file/library. So if we want to get back source of ifs path, we need to execute this APl with one query parameter
“ifspath” and if we want to read source code of source member the we need to execute this API with three
parameters are “srclib”, “srcfil” and “srcmbr”. As an example, below API returns the source code of the source
member JWTTKN in QRPGLESRC source file under LXRDEVDV library:

http://yourserver.com/mdrst/dspsrcmbr?srclib=Ixrdevdv&srcfil=qrpglesrc&srcmbr=JWTTKN
Below example for reading IFS path

http://yourserver.com/mdrst/dspsrcmbr?ifspath=/home/MDRest4i/testjson.json

MDRCHK — Check an object’s existence

This API checks the object existence and returns the success or failure response. The API has three parameters.

” o«

These parameters are “objName”, “objType” and “libName”. As an example, below API checks if the object
“LXRPRDDA” of type *DTAARA exists in MDRST library or not:

http://yourserver.com/devendl/mdrchk?objName=LXRPRDDA&objType=*DTAARA&IibName=MDRST

Generated SWAGGER Examples

Swagger Name Program Name Description

GETPRODUCEREXAMPLEONTICLIENTFILE.JSON GETCLNTPGM This is GET service generated from
the accelerator using swagger and
this APl brings the data from
TICLIENT file on the basis of the
supplied parameter.

GETCONSUMEREXAMPLEONTICLIENTFILE.JSON GETCLNTPGC This is a REST consumer program
generated from the accelerator
using swagger. It calls the GET
service (i.e. GETCLNTPGM API) and
writes the received records in the
TICLIENT file.

GETPRODUCEREXAMPLEONTIPOLICYFILE.JSON GETPLCYPGM This is GET service generated from
the accelerator using swagger and
this APl brings the data from
TIPOLICY file on the basis of the
supplied parameter.

GETCONSUMEREXAMPLEONTIPOLICYFILE.JSON GETPLCYPGC This is a REST consumer program
generated from the accelerator
using swagger. It calls the GET
service (i.e. GETPLCYPGM API) and

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 35/167

http://mddev.mdcms.ch:2545/mdrst/dspsrcmbr?srclib=lxrdevdv&srcfil=qrpglesrc&srcmbr=JWTTKN
http://mddev.mdcms.ch:2545/devend1/mdrchk?objName=LXRPRDDA&objType=*DTAARA&libName=MDRST

‘ MIDRANGE DYNAMICS

providing innovative IBM i solutions

MDRest4i User & Reference Guide

writes the received records in the
TIPOLICY file.

POSTPRODUCEREXAMPLEONTICLIENTFILE.JSON

POSTCLNTPG

This is POST service generated from
Accelerator using swagger. This API
writes the records in TICLIENT file as
per the information received in
POST request body

POSTCONSUMEREXAMPLEONTICLIENTFILE.JSON

POSTCLNTPC

This is a REST consumer program
generated from the accelerator
using swagger. It calls the POST
service (i.e. POSTCLNTPG API) and
supplies the data as part of the
request body.

POSTPRODUCEREXAMPLEONTIPOLICYTFILE.JSON

POSTPLCYPG

This is POST service generated from
Accelerator using swagger. This API
writes the records in TIPOLICY file as
per the information received in
POST request body

POSTCONSUMEREXAMPLEONTIPOLICYFILE.JSON

POSTPLCYPC

This is a REST consumer program
generated from the accelerator
using swagger. It calls the POST
service (i.e. POSTPLCYPG API) and
supplies the data as part of the
request body.

PUTPRODUCEREXAMPLEONTICLIENTFILE.JSON

PUTCLNTPG

This is PUT service generated from
Accelerator using swagger. This API
writes/Update the records on the
basis of the supplied parameter in
TICLIENT file as per the information
received in POST request body.

PUTCONSUMEREXAMPLEONTICLIENTFILE.JSON

PUTCLNTPGC

This is a REST consumer program
generated from the accelerator
using swagger. It calls the PUT
service (i.e. PUTCLNTPG API) and
supplies the data as part of the
POST request body.

PUTPRODUCEREXAMPLEONTIPOLICYFILE.JSON

PUTPLCYPG

This is PUT service generated from
Accelerator using swagger. This API
writes/Update the records on the
basis of the supplied parameter in
TIPOLICY file as per the information
received in POST request body.

PUTCONSUMEREXAMPLEONTICLIENTFILE.JSON

PUTPLCYPC

This is a REST consumer program
generated from the accelerator
using swagger. It calls the PUT
service (i.e. PUTPLCYPG API) and

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com

36/167

‘ MIDRANGE DYNAMICS

providing innovative IBM i solutions

MDRest4i User & Reference Guide

supplies the data as part of the
POST request body.

PATCHPRODUCEREXAMPLEONTICLIENTFILE.JSON

PCHCLNTPG

This is PATCH service generated
from Accelerator using swagger.
This APl Update the records
because of the supplied parameter
in TICLIENT file as per the
information received in POST
request body.

PATCHCONSUMEREXAMPLEONTICLIENTFILE.JSON

PCHCLNTPC

This is a REST consumer program
generated from the accelerator
using swagger. It calls the PATCH
service (i.e. PCHCLNTPG API) and
supplies the data as part of the
POST request body.

PATCHPRODUCEREXAMPLEONTIPOLICYTFILE.JSON

PCHPLCYPG

This is PATCH service generated
from Accelerator using swagger.
This APl Update the records on the
basis of the supplied parameter in
TIPOLICY file as per the information
received in POST request body.

PATCHCONSUMEREXAMPLEONTIPOLICYTFILE.JSON

PCHPLCYPC

This is a REST consumer program
generated from the accelerator
using swagger. It calls the PATCH
service (i.e. PCHPLCYPG API) and
supplies the data as part of the
request body.

DELETEPRODUCEREXAMPLEONTICLIENTFILE.JSON

DELCLNTPG

This is DELETE service generated
from Accelerator using swagger.
This API deletes the records on the
basis of the supplied parameter in
TICLIENT file.

DELETECONSUMEREXAMPLEONTICLIENTFILE.JSON

DELCLNTPC

This is a REST consumer program
generated from the accelerator
using swagger. It calls the DELETE
service (i.e. DELCLNTPG API).

DELETEPRODUCEREXAMPLEONTIPOLICYFILE.JSON

DELPLCYPG

This is DELETE service generated
from Accelerator using swagger.
This API deletes the records on the
basis of the supplied parameter in
TIPOLICY file.

DELETECONSUMEREXAMPLEONTIPOLICYFILE.JSON

DELPLCYPC

This is a REST consumer program
generated from the accelerator
using swagger. It calls the DELETE
service (i.e. DELPLCYPG API).

POSTREADRECORDEXAMPLE.JSON

POSTREADPG

This is POST service generated from
Accelerator using swagger. This API

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com

37/167

‘ MIDRANGE DYNAMICS

51

providing innovative IBM i solutions

MDRest4i User & Reference Guide

reads the records from the file (i.e.
TICLIENT) as per the parameter
values received in POST request
body.

POSTWRITEANDRESPONSE.JSON

POSTWRTRSP

This is POST service generated from
Accelerator using swagger. This API
writes the records in TICLIENT file as
per the information received in
POST request body and returns the
response.

POSTLOADWITHOUTFILE.JSON

POSTLOADVL

This is POST service generated from
Accelerator using swagger. This API
only loads the variable values
received in POST request body.

MDRest4i Paging implementation

The MDRest4i copybooks for generating the REST services and the modules utilizing these services have the
provision of implementing paging. In order to be able to use page forward and backward, the changes are

required at three places:

Additional pagination headers in HTTP server config

The current implementation requires the four custom headers defined below to be added to the HTTP server

config

These HTTP headers are automatically added when building an HTTP server instance using command

MDRGENSRV

LXRPBGNKEY: Page begin key value. This is the begin key of the current page to be returned from the service
back to the consumer so that the consumer can send this key to the service for loading the previous page. This
key contains the database file key field values and each value is separated by “&&".

LXRPENDKEY: Page end key value. This is the end key of the current page to be returned from the service back
to the consumer so that the consumer can send this key to the service for loading the next page. This key

contains the database file key field values and each value is separated by “&&”.

LXRPAGETYP: One character value which should be blank for the first request, “N” for next and “P” for the

previous page request

LXRNBRRCD: Number of records requested. This value should be supplied in each request (initial loading,
previous page and next page). If this value is not sent in custom header, the service will return first 100 rows or

end of file whichever occurs before.

To allow these custom header values, open the http administration page and make sure that below entries are

allowed in headers.

"LXRPBGNKEY,LXRPENDKEY,LXRPAGETYP,LXRNBRRCD"

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com

38/167

5.2

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

Setup BLGUENEM Advanced | Related Links

All Servers HTTP Servers Application Servers | Installations

b Running Server: | LXRPAGDEMO - Apache v | Server area: | Global configuration v
Common Tasks and Wizards LogFormat "%{User‘—ager}t}i" agent

) Create Web Services Server LogFormat "%{Referer}i -» RU" referer

J Create HTTP Server LogFormat "kh %1 %u %t “\"Rr\" Xz kb" common

NG Eate i nplicalioniS ey CustomLog logs/access_log combined

i) e v e A LogMaint logs/access_log 7 @

T LogMaint logs/error_log 7 @

. Add a Directory to the Wb SetEnvIf "User-Agent” "Mozilla/2" nokeepalive

B LDAP Configuration SetEnvIf "User-Agent” "IDK/1\.@" force-response-1.0
SetEnvIf "User-Agent” "Java/1\.@" force-responze-1.8

Server Properfies SetEnvIf "User-Agent” "RealPlayer 4)\.8" force-response-1.8

[3 General Server Configuration SetEnvIf "User-Agent” "MSIE 4%.8b2;" nokeepalive

ggﬁ_:l}::ﬁursrfsa”agemem SetEnvIf "User-Agent" "MSIE 4%.8b2;" force-response-1.@

B URL Mapping Header Always Set Access-Control-Allow-Origin "*"

Header Always Set Access-Control-Allow-Headers "LXRPBGNKEY,LXRPENDKEY, LXRPAGE I
<Directory />

[Request Processing

[HTTP Responses Order Deny,Allow
& Content Setfings Deny From all
[Directery Handling </Directory>
<Directory /Q5YS.LIB/DEVENPAG.LIB>
[Security ord All D
[Dynamic Gontent and CGI rder ou,Deny
I Lagging Allow From all
</Directory>
P Proxy <Directory /www/lxr/lxrpagdemo/proddocs/swaggers>
[4 System Resources Order Allow,Deny -
[Cache Al lmw Eram =11
BFRCA »
G Smart Filtering Resize the edit window: Shorter Taller Narrower VWider

[Compression

Pagination logic in the MDRest4i service copybooks

The changes have been made in LXRRESTC, MDRESTDFN and LXRRESTP members for paging implementation.
Below are the details”:

LXRRESTC: When the request is of type “GET”, the first check is done to retrieve the custom header values.
These are LXRPBGNKEY, LXRPENDKEY, LXRPAGETYP and LXRNBRRCD. If the requested page type is not “N” or
“P”, the request is normally processed, otherwise, it is routed to appropriate routine for the page request. In
page forward or backward request, the query parameters in the request URL are ignored because the
processing is done based on the received values of begin and end keys. In case of the previous page request,
the “begin key” is loaded in s_Value field of qualified data structure array named “d_parm”. In next page
request, the key field values in “end key” is loaded in s_value field of qualified data structure array. The control
is then sent to Z_PrcNxtPage or Z_PrcPrvPage subroutines depending on the type of request. Blank subroutine
bodies of these two subroutines have been provided in LXRREST and these are expected to be overridden in
the program implementing the “GET” service with page forward and backward capabilities. The default
inclusion of subroutine z_PrcNxtPage is subject to the compiler directive LXR_NxtPage not being defined using
define compiler directive command and that for z_PrcPrvPage is subject to the compiler directive
LXR_PrvPage. The loading of the key values happens in Z_LoadKeys subroutine and if you would like to change
the default processing, use the compiler directive LXR_LoadKeys and define the subroutine Z_LoadKeys in your
program that uses LXRRESTC/D/P copybooks.

MDRESTDFN: Below variables have been defined in this copybook for paging purpose:

0235.00 * Page processing variables

0236.00 d w_wrkkeys S 1024
0237.00 d w_pageEndkey S 1024
0238.00 d w_pageBgnkey S 1024
0239.00 d w_pageReqType S 2
0240.00 d w_nbrRcd S 101 0

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 39/167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

5.3

providing innovative IBM i solutions

0241.00 d n_BgnKey S n

LXRRESTP: The only change in regard is in LXRPush procedure to send these custom headers.

Example: The program CLM_DETPGS has been provided in QEXAMPLES source file and this example depicts the
usage of paging. This example works on our development machine and can be used. If you would like to use this
on your system, copy the file LXCLAIM from MDRSTxx to the library of your CGI job. Alternatively, change the
source to have the library qualification for LXCLAIM file in SQL query of this program. Alternatively, MDRGENPRD
command can be used to create an example depicting page processing.

Logic in the REST Consumer module for pagination

If your REST service has been developed by MDRest4i and it has the pagination logic implemented through the
custom headers LXRPBGNKEY, LXRPENDKEY, LXRPAGETYP and LXRNBRRCD, you can handle paging in REST
consumer using same headers.

In order to do this, below variable definition should be added in the consumer program:

d w_BgnKey S 1024
d w_EndKey s 1024
d w_NbrRcdc s 1024
d w_PageTyp s 1
d w _nbrrcd s 5s 0 Inz(6)

After the control returns from GskConsume procedure, you have to load the values of custom header,
followed by setting “w_pagetyp” = ‘N’ (for next page) and “P” (for previous page) and again call GskConsume
procedure.

Example: The sample depicting the use of consumer to load initial, next and previous page is provided in
CLM_DETPGC source member in QEXAMPLES. The mainline section of this program has below statements:

tg InitializePointer = S%paddr(Initialize);
tg BuildReqPointer = %paddr (BuildRequest);

tg ClosedownPointer = S%paddr(Closedown) ;

GskConsume () ;

// Process the next request for next page
Exsr Z LoadCustomHdr;
w_pagetyp = 'N';

GskConsume () ;

// Process the next request for previous page
Exsr Z LoadCustomHdr;

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 40/167

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

w_pagetyp = 'P';
GskConsume () ;

*Inlr = *On;

In this example, the initial GskConsume call is to load the begin page and then subroutine z_LoadCustomHdr is
executed to load the begin and end key values from the custom headers as received from the REST service and
the same gets sent to the subsequent request. The variable w_pageTyp is set to “N” for next page request and
the third call is with w_pageTyp="P” for loading the previous page.

The last difference is in Initialize procedure. We have the call to “AddHttpHeader” procedure to send these
custom headers to the next http GET Request.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 41/167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

6 V12 Token Management

From Version 12 of MDRest4i onwards, the JWT tokens are now being stored/managed with a new file and set
of REST API’s, RPGLE modules.

Type Object
PF/TABLE MRDCREDX — MDRest4i SDK Credential Store
RPGLE Procedure ValidateToken() — Validate Token

(Found in copybook QRPGLESRC/LXRRESTP)

RPGLE MODULE MRDENCRX — MDRest4i SDK Credentials Store I/0 Module
RPGLE MODULE MRDCREDXR — MDRest4i Token Management Module
REST API MRDCREDXA — MDRest4i SDK Credentials Store API

(Supports GET/POST/PATCH/DELETE methods)

REST API MRDCREDXB — MDRest4i SDK Credentials Store APl — Validate Tkn
(Supports GET/POST methods)

Token Validation for an API built with MDREST4i itself, is handled by the ValidateToken() procedure from
LXRRESTP copybook of the REST producer.

When this procedure call is added to producer in the z_proc[method] it extracts the specific http headers (i.e.
“CLIENTID”, “APPID”) and extracts the “AUTHORIZATION” where the value is expected as “Bearer [token]”. It
then validates the token against the “MRDCREDX - Token Credentials Store” detailed below.

In order to make sure the APl is able to get the Authorization header from the request, you must add below
highlighted setting in the HTTP server configuration.

"ELECTM Advanced | Related Links

All Servers HTTP Servers Application Servers | Installations

% Running a Server: [MDRDEMOD -Apache w| Server area: | Global configuration

vl Common Tasks and Wizards 20 LogFormat “%h %l %u %t \"%r\" %>s %b" common

I Create Web Services Server 21 CustomLog logs/access_log combined
J Create HTTP Server 22 LogMaint logs/access_log 7 0
) Create Application Server 23 LogMaint logs/error_log 7 0
24 SetEnvif "User-Agent” "Mozilla/2" nokeepalive
«| HTTP Tasks and Wizards 25 SetEnvif "User-Agent” "JDK/1\.0" force-response-1.0
J Add a Directory to the Web 26 SetEnvif "User-Agent” "Java/1\.0" force-response-1.0

| LDAP Configuration
J Configure SSL

27 SetEnvif "User-Agent

SetEnvif "User-Agent

RealPlayer 4\.0" force-response-1.0
MSIE 4\.0b2;" nokeepalive

| Server Properties et |30 SetEnvif Authorization "(.‘}" HTTP_AUTHORIZATION=$1

[genteapal Siilrver C°"ﬁ9":ra"°" 31 Header Set Access-Control-Allow-Origin ™"

gvmal"heést:"ageme" 32 #SetEnv QIBM_CGI_LIBRARY_LIST "MDRDEMOD;MDRSTT82"

[URL Mapping 33 Header Set Access-Control-Allow-Headers CLIENT_ID,AUTHORIZ]A
34 <Directory />

™ Request Processing 35 Order Deny,Allow

[HTTP Responses 36 Deny From all
[Content Settings 37 <[Directory>

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 42 /167

Parameter Attributes | Description

NAIDRANGBRA DY NAINAIEIES first part of the composite kwmg{hﬁsdpgr%%rigﬁgéi@ﬁde

providing innovative IBM i solutions to issue and store the token in MRDCRED file

Application Id 20A This is the second part of the composite key which is the unique
identifier to issue and store the token in MRDCRED file

Usage Type 1A Usage type of the token (A — API, C— Consumer, B — Both, O — Other)

Credential Type 1A Credential Type (B — Basic, T — Bearer, R — Remote)

Extended Option 5A

Algorithm 20A Depending on the type of token being generated, the value should be
sent accordingly. The possible values are:

UUID = Random 36 byte value

JWT-HS256 = Secret and SHA256 Encryption for Signature
JWT-RS256-DCM = RS256 using DCM App
JWT-RS256-KST = RS256 using PF and Lib Key Store
JWT-RS256-PVT = RS256 using Private & Public Keys
JWS-HS256 = Secret and SHA256 Encryption for Signature
JWS-RS256-DCM = RS256 using DCM App

JWS-RS256-KST = RS256 using PF and Lib Key Store
JWS-RS256-PVT = RS256 using Private & Public Keys

PAT = Personal Access Token

Authentication 8000A Authentication Token

Token

User Name 256A User name associated with the token (not used now)

Password 1024A Password corresponding to the user profile above

Payload 2048A JSON payload for the token generation. It must have “exp” for the

token validity duration in seconds starting from the token creation
timestamp. If “iat” is there, it will be replaced with the current epoch
timestamp value. Refer https://www.epochconverter.com/

Client Secret 4096A Some string that can be used as the secret to generate/hash the token
Public Key 4096A Public Key for RSA token

Private Key 4096A Private Key for RSA token

Auth Server 128A Authentication Server

Auth Port 5P,0 Authentication Port

Token Server 128A Token Server

Token Port 5P,0 Token Port

Refresh Method 10A Refresh Method (e.g. *AUTO, *MANUAL)

Refresh Token 8000A Refresh Token

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 43 /167

https://www.epochconverter.com/

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

6.1

6.2

providing innovative IBM i solutions

Auth Token Expiry 11P,0 Auth token expiry period(how long before token expires in Expiry
Unit(s)

Refresh Token 11P,0 Refresh token expiry period(how long before token expires in Expiry

Expiry Unit(s) If not supplied, this is set to 30 days by default

Expiry Unit 10A Time Unit of measure (i.e. the duration in which the token expiry and

refresh expiry should be calculated e.g. *SECONDS)

Token Issuer 36A Auto populated by the APl generating the token and it contains the
user profile which was used to create the token

Issue Time 2672 Token issue timestamp

Issue Log 64A Issue user and job details

Update Time 26Z Token update timestamp

Update Log 64A Updated by user and job information

MRDCREDX - Token Credentials Store
The V12 physical file that stores all token credentials and tokens is:

“MRDCREDX - MDRest4i SDK Credential Store”

By default, this is stored in the MDRSTxxxx library. Below is the structure of this file:

*Note: The sensitive data (i.e. the fields Auth Token, Refresh Token, Password, Secret, public key, private key)
are stored in encrypted form. The encryption is done using HS256 algorithm(in Procedure mrdencrxs below)
taking the secret from the data area “MRDCREDDA” if present in library list, otherwise, a hard-coded string is
used to encrypt/decrypt this data.

MRDENCRX — MDRest4i SDK Credentials Store 1/0 Module

If you want to access the data in this file, include the copybook MRDENCRXP in your program for the relevant
definitions.

The copybook “MRDENCRXP” has the prototype definition of the main procedure in MRDENCRX module (which
is available in LXRGLOBAL binding directory). The data structure being used in this prototype has all the fields of
MRDCREDX file and it also has an “option” field with the meanings listed below. The table MRDCREDX file stores
some of the sensitive information in encrypted form but the program MRDCREDR returns the decrypted data.

“G” — Retrieve the record for the supplied Client ID and App ID
“U” — Update limited fields (e.g. payload, token, refresh token, refresh token expiry etc.)
“R” — Replace all the columns of the record

“C” — Create the record

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 44 /167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

6.3

providing innovative IBM i solutions

“D” — Delete the record

During update operation (i.e. “U” actions, the field which you do not want to update should be supplied with
the hard-coded value '*Blank'.

In order to retrieve the specific token or Client/App Id record, set the value of “option” field of the MRDCREDDS
data structure to 'G' and optionally set the “client Id” and “app Id” values for which you want to access the auth
token etc information. Once the data structure “mrdcredds” is set, call the procedure “mrdencrxs” coming from
the module “MRDENCRX”. This procedure will return the complete data structure loaded with the token and all
other details relevant to that specific record.

MRDCREDXR - Token Management Module

The module MRDCREDXR has various procedures for handling the HS256 or RS256 tokens. Below is the list of
available procedures. The prototype definitions of the same can be found in MRDCREDXC copybook member
available in QRPGLESRC source file of the product library. The module MRDCREDXR is accessible via the
LXRGLOBAL binding directory.

6.3.1 CrtHS256Token ()

This procedure is used to create HS256 token. Below is the list of parameters and their meanings as used in
this procedure.

Please note that first seven parameters are mandatory, rest are optional

Parameter Attributes Purpose

Action 1A This parameter is not used at present

Payload 2048A This is expected to have the JSON payload for creating token
Secret 4096A Secret String (must be greater than 32 bytes in size)
Authtoken 2048A Returned authentication token

RefreshToken 2048A Returned refresh token

Algorithm 20A This refers to Encryption Algorithm & Token Creation Method
Status 50A Details of successful token creation or error message

This is the first part of possible composite key with which you may like
Clientld 36A store token

This is the second part of possible composite key with which you may

Applicationid 20A like store token
UsageType 1A This refers to the usage of token (A-API, C-Consumer, B-Both, O-Other)
CredType 1A Credential type (B-Basic authentication, T-Bearer token, R-Remote)

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 45/167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

JsonNamVal 1780A This is a data structure containing two separate arrays (i.e. label &
value) of 10 dim each. The definition of this data structure is available
in MRDCREDXC copybook

Refresh token expiry period(how long before token expires in Expiry
refexp 11,0 Unit(s) If not supplied, this is set to 30 days by default
expunit 10A Expiry unit (e.g. *SECONDS, *MINUTES) - Not in use now
username 256A User name that you want to set while creating the token
password 1024A Password of the user profile
refreshmth 10A Refresh method (e.g. *AUTO, *MANUAL) - Not in use now

Issuer of the token (if you want to set some value other than the user
issuer 36A profile)

6.3.2 CrtPAToken ()

This procedure is used to create personal access token. Below is the list of parameters and their meanings as
used in this procedure.

Please note that all the parameters are mandatory

Parameter Attributes Purpose
Authtoken 2048A Returned authentication token
RefreshToken 2048A Returned refresh token

Supply the token length (How much length’s token wants to
TokenlLength 3,0 create).

Status 50A Details of successful token creation or error message

This is the first part of possible composite key with which you may
Clientld 36A like store token

This is the second part of possible composite key with which you
Applicationld 20A may like store token

This refers to the usage of token (A-API, C-Consumer, B-Both, O-
UsageType 1A Other)

CredType 1A Credential type (B-Basic authentication, T-Bearer token, R-Remote)

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 46 /167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

authTokenExpiry Auth token expiry period(how long before token expires in Expiry
11,0 Unit(s) If not supplied, this is set to 30 days by default
Refresh token expiry period(how long before token expires in Expiry
RefreshTokenExpiry | 11,0 Unit(s) If not supplied, this is set to 30 days by default
expTimestamp 26A Token Expiry (timestamp) — Output parameter

6.3.3 CrtRS256Token()

This procedure is used to create RS256 token. Below is the list of parameters and their meanings as used in this
procedure. When algorithm is used as “JWT-RS256-DCM”, it uses DCM application parameter to create the
token, however, when the value is “JWT-RS256-KST”, it means use key file, library and key label parameters to
find the RS256 key. The generated token is returned in the second parameter:

Parameter Attributes Purpose
This parameter used as “S” would use signing algorithm, otherwise
Action 1A with “E”, it will use encryption
Authtoken 5242880A Returned authentication token
Payload 5242880A This is expected to have the JSON payload for creating token
This parameter expects the algorithm to use
JWT-RS256-DCM = RS256 using DCM App
Algorithm 20A JWT-RS256-KST = RS256 using PF and Lib Key Store
DcmApp 20A DCM application to be used to create RS256 token
This is the first part of possible composite key with which you may
Clientld 36A like store token
This is the second part of possible composite key with which you
Applicationld 20A may like store token
This refers to the usage of token (A-API, C-Consumer, B-Both, O-
UsageType 1A Other)
CredType 1A Credential type (B-Basic authentication, T-Bearer token, R-Remote)
Refresh token expiry period(how long before token expires in
refexp 11,0 Expiry Unit(s) If not supplied, this is set to 30 days by default
expunit 10A Expiry unit (e.g. *SECONDS, *MINUTES) - Not in use now
Key file 10A The file that contains RS256 key
Key lib 10A The library that contains RS256 key file
Key label 32A Label within the key file

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 47 /167

&

MIDRANGE DYNAMICS

providing innovative IBM i solutions

6.3.4 RefHS256Token()

MDRest4i User & Reference Guide

This procedure is used to refresh the HS256 token. Below is the list of parameters and their meanings as used
in this procedure. Please note that first four parameters are mandatory, rest are optional. You can supply
blank in second parameter if you are supplying the client Id and application Id parameters, otherwise you have
to supply the secret too for decrypting the token. If you want to receive the Json name and value pairs from
the payload which was used to create the supplied token, you can supply the last parameter:

Parameter Attributes Purpose
RefreshToken 2048A Supply the refresh token in this parameter
Secret 4096A Secret String (required if client Id and application Id not supplied)
Authtoken 2048A Returned authentication token
Status 50A Details of successful token creation or error message
This is the first part of possible composite key with which you may
Clientld 36A like store token
This is the second part of possible composite key with which you may
Applicationld 20A like store token
JsonNamVal 1780A This is a data structure containing two separate arrays (i.e. label &
value) of 10 dim each

6.3.5 ValidateToken ()

This procedure is used to validate an HS256 or RS256 token. Below is the list of parameters and their meanings
as used in this procedure. This procedure works only on the auth token information supplied. If you have also
supplied the values in client Id and Application Id, it would use them as well to locate the record for identifying
whether its R5256 or HS256 token. The third parameter will return the JSON label and value arrays as part of the
data structure after extracting the payload from the token:

Parameter Attributes Purpose

AuthToken 2048A Supply the refresh token in this parameter

Status 50A Details of successful token creation or error message

JsonNamVal 1780A This is a data structure containing two separate arrays (i.e. label &
value) of 10 dim each

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 48 /167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

6.4

providing innovative IBM i solutions

Secret 4096A Secret String (required if client Id and application Id not supplied)

Clientld 36A This is the first part of possible composite key with which you may
like store token

Applicationld 20A This is the second part of possible composite key with which you may
like store token

TokenType 1A This parameter is for internal use when the procedure is called for
token refresh. You can supply blank.

6.3.6 getCNSToken()

This procedure is used to retrieve the token from the MRDCREDX file and refresh it if token has expired. This
function has five parameters. Where first two parameters are input parameters and last three parameters are
output parameters. We need to supply application id in first parameter and supply client id as second
parameter. Third parameter to return Token, fourth parameter to send message severity and fifth last
parameter to send message. If token exist and not expired, will return the token. If token does not exist, return
error message, and send message severity as 30. If token expired, refresh it, and write the refreshed token to
MRDCREDX and return the token to consumer and send message severity as 10 and message (Token refreshed
successfully). If any error at a time of token refreshing, return the message (‘Error occurred during token
refresh') and send message severity 30.

Parameter Attributes Purpose

Applicationld 20A This is the first part of possible composite key with which you may
like store token.

Clientld 36A This is the second part of possible composite key with which you may
like store token.

Token 8000A Returned The token.

Message Severity 2S0 Return message severity (00), when token valid and not expired. If
token expired set message severity (10). If token does not exist, not
valid or any error occurred during token refreshing it will return as
(30).

Message 50A If token exist and valid it will not return any massage. If token
expired, token does not exist or token is not valid, return the error
message to consumer.

Token Management REST API’s

There are two REST APIs MRDCRECXA and MRDCREDXB which provide the options to create, refresh, update
validate and delete the token entries in the MDRest4i Credentials Store

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 49 /167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

6.4.1 MRDCREDXA - Issue a new token using HS256 algorithm

To issue a token, use MRDCREDXA with “POST” method. We have to supply below information as part of the

request body:

Parameter Description

clientld This is the first part of the composite key which is the unique identifier to issue and
store the token in MRDCRED file

applicationld This is the second part of the composite key which is the unique identifier to issue
and store the token in MRDCRED file

usageTyp Usage type of the token (A — API, C — Consumer, B — Both, O — Other)

credTyp Credential Type (B — Basic, T — Bearer, R — Remote)

alg_keys Depending on the type of token being generated, the value should be sent
accordingly. You need to supply the value “JWT-HS256” in this field.

username User name associated with the token (not used now)

password Password corresponding to the user profile above

payload JSON payload for the token generation. The payload should be escaped as its JSON

inside JSON. It must have “exp” for the token validity duration in seconds starting
from the token creation timestamp. If “iat” is there, it will be replaced with the
current epoch timestamp value. Refer https://www.epochconverter.com/

clientSecret

Some string that can be used as the secret to generate/hash the token

refreshMethod

Refresh method (e.g. *AUTO, *MANUAL) - Not in use now

refreshTokenExpiry

An optional value: Refresh token expiry period(how long before token expires in
Expiry Unit(s) If not supplied, this is set to 30 days by default

timeUnitOfMeasure

The duration in which the token expiry and refresh expiry should be calculated

As an example, below is the URL and the request body to this program (Please note that, the payload should
be escaped, otherwise, it won’t be a valid JSON):

https://dev.mdcms.ch/mdrstt]11/mrdcredxa

"clientId":"POSTMANREQ",

"applicationId":"MDREST4IAPP",

"usageType":"C",

"credType":"T",

"alg keys":"JWT-HS256",

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 50/167

https://www.epochconverter.com/

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

"userName":"postmanuser",

"password":"postmanpwd",

"payload":"{\"sub\": \"1234567890\", \"name\": \"John Doe\", \"iat\": 1716239022}",
"clientSecret":"Birds play significant role in human lifecycle",
"refreshMethod":"*MANUAL",

"refreshTokenExpiry":80000,

"timeUnitOfMeasure":"*seconds"

Below would be the response:
{
"message": "Token Created",

"authToken":
"eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCI9.eyJzdWI10iIxMJMONTY30DkwIiwibmFtZSI6IkpvaG4gRG91IiwiaWFO
IjoxNzE2MjM5MDIy£fQ.QU8z50IVASQipwACzps8lwS2Mg4wmdal rhxYru0T7sM",

"refreshToken":
"eyJhbGciOiJIUZIINiIsInR5cCI6IkpXVCIY.eyJzdWIiO0iIxMjMONTY30DkwIiwibmFtZSI6IkpvaG4gRGI1IiwiaWF0
IjoxNzE2MjM5MDIyLCIyZWZyZXNoX3ZhbHV1IjoiUmVmemVzaFOWYWwifQ.nzaoRjsDD9 ytjwOmaE6eQBgYnfeuRcLPsB
dh358860"

}

6.4.2 MRDCREDXA - Issue a new token using RS256 algorithm

To issue a token, use MRDCREDXA with “POST” method. We have to supply below information as part of the
request body:

Parameter Description

clientld This is the first part of the composite key which is the unique identifier to issue
and store the token in MRDCRED file

applicationld This is the second part of the composite key which is the unique identifier to
issue and store the token in MRDCRED file

usageTyp Usage type of the token (A — API, C— Consumer, B — Both, O — Other)
credTyp Credential Type (B — Basic, T — Bearer, R — Remote)
alg_keys Depending on the type of token being generated, the value should be sent

accordingly. You need to supply the value “JWT-RS256-DCM” in this field.

username User name associated with the token (not used now)
password Password corresponding to the user profile above
payload JSON payload for the token generation. The payload should be escaped as its

JSON inside JSON. It must have “exp” for the token validity duration in seconds
starting from the token creation timestamp. If “iat” is there, it will be replaced

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 51/167

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

with the current epoch timestamp value. Refer
https://www.epochconverter.com/

dcmApp DCM application name which will be used for R$256 algorithm
refreshMethod Refresh method (e.g. *AUTO, *MANUAL) - Not in use now
refreshTokenExpiry An optional value: Refresh token expiry period(how long before token expires in

Expiry Unit(s) If not supplied, this is set to 30 days by default

timeUnitOfMeasure The duration in which the token expiry and refresh expiry should be calculated

As an example, below is the URL and the request body to this program (Please note that, the payload should
be escaped, otherwise, it won’t be a valid JSON):

https://yourserver/mdrst/mrdcredxa

"clientId":"POSTMANREQRS256",
"applicationId":"MDREST4IAPPRS256",

"usageType":"C",

"credType":"T",

"alg keys":"JWT-RS256-DCM",

"userName":"postmanuser",

"password":"postmanpwd",

"payload":"{\"sub\": \"1234567890\", \"name\": \"John Doe\", \"iat\": 1716239022}",
"dcmApp" : "MDREST4I SIGN",

"refreshMethod":"*MANUAL",

"refreshTokenExpiry":0,

"timeUnitOfMeasure":"*seconds"

Below would be the response:

{
"message": "Token Created",

"authToken":
"eyJhbGciOiJSUzIINiIsInR5cCI6IkpXVCI9.eyJzdWI101iIxMJMONTY30DkwIiwibmFtZSI6IkpvaG4gRG91IiwiaWEFO
IjoxNzE2MiM5MDIy£Q . vgokcwIJAABhE 3kDXXXmZwbiseRV2G71iJ yd cO-i86J4NOh1iMY3yMp6rZQRMKSYWV-
AMp44CP0aATg773bU182zvy3T685mIbF5MUKrhMyuQIhG2L2NaPT1B~
pkjdEIaquSOXNHOwSeD51B4Y3dKzyk0I15EDJtcsaMcricDIMUhOgCDK] ZGBJOJATiMUwpIE IKT1Ksk1V8Iwtlagz324J
9EywcxeQ3MSJIXAiJVurlgaiG-

X6IbTUgqlC7CKenjmhDDCfAbPpNMXn 2Q4is4B2RUJCpTLIVUYT1 N3Bcfémp8VAeVLtRa4R00CEfzdwLgiNewTyGIpQTtXVI
yAiapR1AFowxZclIh8MF 3TatDh3tqWpICHypCrjyWcCMRogOnoxpmOod4i jBXSFuleEo9xv_ 16FgAcCMEGOF Ayl7dv4ll
ZLezpFA VpMzKYiYOPQRUOJHOa6BgQXROFowyaOJo88rlvjAlg UHcziexhmKaVX a-
cfk6AGPOWCOoJ4rLtYgwFqCrwltS GrUQQAjwVEB3YZB2poT-
bPpOmzZQOBCkdVx5VoAlVWRUUROASArFiW4YFeUB4BhXU1B6QyBbFbcQCjDYifVt11lvLb3Z20Fho6JtCLxtEbwSOggi6 6HP
PTeaFmZeQDOIO2n8568I7zffbyTt-UCYOQT4tmxrPg8i5A"

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 52 /167

https://www.epochconverter.com/

‘ MIDRANGE DYNAMICS

providing innovative IBM i solutions

MDRest4i User & Reference Guide

6.4.3 MRDCREDXA - Issue a personal access token

To issue a personal access token, use MRDCREDXA with “POST” method. We have to supply below information
as part of the request body:

Parameter Description

clientld This is the first part of the composite key which is the unique identifier to issue
and store the token in MRDCRED file

applicationld This is the second part of the composite key which is the unique identifier to
issue and store the token in MRDCRED file

authToken You may like to create a personal access token of your choice and in that case,
you can supply the string in this parameter. The token creation API will store this
as the personal access token. If this parameter is not supplied or supplied as
blank, it will generate the 32 byte string as the auth token.

refreshToken You may like to create a refresh token of your choice and in that case, you can
supply the string in this parameter. The token creation APl will store this as the
personal access token. If this parameter is not supplied or supplied as blank, it
will generate the 32 byte string as the auth token.

usageTyp Usage type of the token (A — API, C— Consumer, B — Both, O — Other)

credTyp Credential Type (B — Basic, T — Bearer, R — Remote)

alg_keys Supply the value “PAT” in this parameter

authTokenExpiry

An optional value: Auth token expiry period(how long before token expires in
Expiry Unit(s) If not supplied, this is set to 30 days by default

RefreshTokenExpiry

An optional value: Refresh token expiry period(how long before token expires in
Expiry Unit(s) If not supplied, this is set to 30 days by default

timeUnitOfMeasure

The duration in which the token expiry and refresh expiry should be calculated

As an example, below is the URL and the request body to this program:

https://dev.mdcms.ch/mdrstt11/mrdcredxa

"clientId":"POSTMANREQS",

"applicationId":"MDCMSAPP1",

"authToken":"StuartMilliganPersonalToken20210617",

"refreshToken": "StuartMilliganRefreshToken20210617",

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 53/167

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

"usageType":"C",
"credType":"T",

"alg keys":"PAT",
"timeUnitOfMeasure":"*seconds",
"authTokenExpiry": 3600,

"refreshTokenExpiry": 15552000

Below would be the response:

{
"message": "Token Created",
"authToken": "StuartMilliganPersonalToken20210617",
"expiry": "2023-01-02-10.18.26.630000",
"refreshToken": "StuartMilliganRefreshToken20210617",

"refreshTokenExpiry": "2023-07-01-09.18.26.630000"

However, if we supply below request body (i.e. not supplying auth token):
{

"clientId":"POSTMANREQS8",

"applicationId":"MDCMSAPP1",

"usageType":"C",

"credType":"T",

"alg keys":"PAT",

"timeUnitOfMeasure":"*seconds",

"authTokenExpiry": 3600,

"refreshTokenExpiry": 15552000

We get below response:

{
"message": "Token Created",
"authToken": "MzIwOTEzMDgwNzEyMjk30DcOMjc5NDg2",
"expiry": "2023-01-02-10.49.34.098000",
"refreshToken": "MzEONzg4NzMwMzE20Dk3MDM4MDU4MzM2",

"refreshTokenExpiry": "2023-07-01-09.49.34.098000"

6.4.4 MRDCREDXA - Validate the token using client Id and application ID

There are two ways we can validate a token through MRDCREDXA. The first one is using “GET” method and
second by “POST” method. In “GET” method, we have to supply the auth token and optionally the client Id and
application ID either as query parameters or as http headers. This is shown in below screenshot where for
example the auth token is supplied as query parameter and remaining two fields have been supplied via http
headers:

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 54 /167

‘) MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

GET A4 https://dev.mdcms.ch/dverma/mrdcredxa?token=eyJhbGciOiJlUzI1NilsInR5cCI61kpXVCJ9.eyJzdWIiQilxMjMONTY 30DkwliwibmFtZ
Params @ Authorization Headers (8) Body Pre-request Script Tests Settings Cookies
Headers 5 hidden
KEY VALUE DESCRIPTION oon Bulk Edit Presets v
clientld POSTMANREQS
applicationld MDREST4IAPP

You may also supply the client Id and application Id in exceptional case when you have created two entries of
the same token for different client Id and application Id. If supplied, the combination of token with the client
and application Id will be searched, otherwise, only the token will be searched in DB file.

Below is the response to this request. The other responses could be “Token Invalid” or “Token Expired“.

"message": "Token is valid",

Below are the other possible error messages. When these messages appear, the response code is set to 403.

Error: Invalid Authentication
Error: Invalid Token

Error: Token Expired

You may also use POST request to validate the token and in that case, you have to supply “alg_keys” as
“TOKEN-VALIDATION” and “authToken”. You may supply clientld and applicationld if there is possibility of
more than one entries existing with the same token value.

POST ~ https://dev.mdcms.ch/mdrstt11/mrdcredxa

Params Authorization Headers (7) Body @ Pre-request Script Tests Settings Cookies
none form-data x-www-form-urlencoded @ raw binary GraphQL JSON v Beautify
1]
2 "clientId":"POSTMANREQS",
3 "applicationId":"MDRESTAIAPP",
4 "alg_keys":"TOKEN-VALIDATION",
5 "authToken":"eyJhbGeci0iJIUzIINiIsInRS5cCI6IkpXVCI9.

eyJzdWIi0iIxMjMONTY30DkwIiwibmFtZSI6IkpvaGAgRGI1IiwiaWFOI joxNjMwMzAyMiMILCI1eHALIOD]k2MHO
ZXKXLnGghXFqLN3WAKOmouJlhknolLpRb4DgABRGBOXU"

The response will be same as in case of GET.

6.4.5 MRDCREDXA - Update JWT information

We can use the program MRDCREDXA with “PATCH” method. We have to supply the values to be updated
along with the Client Id/Application Id or auth token. The first priority is given to client Id and Application Id
but if either of them is blank, the next search is made with the token.

Below is an example URL to this request:

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 55/167

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

https://yourserver/mdrst/mrdcredxa

Here is the example requestBody payload:

"clientId":"POSTMANREQ6",
"applicationId":"MDREST4IAPP",

"authtoken":
"eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCI9.eyJzdWIiOiIxMIMONTY30DkwIiwibmFtZSI6IkpvaG4gRGO1IiwiaWF0
Ij0xNjIxODY2NTQyLCJLleHAiOIk2MHO . WpsKn_ S5FVZrGPUSR8LHe-RA2NJ-g5Axa9XNNwVadr08",

"usageType":"C",
"credType":"T",

"alg keys":"JWT-HS256",
"userName":"postmanuserl",
"password":"postmanpwd2",
"authServer":"",
"authPortNumber":0,
"tokenServer":"",
"tokenPortNumber":0,
"refreshMethod" :"*AUTO",
"refreshExpiry":600,

"timeUnitOfMeasure":"*seconds"

Below would be the response:

{

"message": "Entry Updated successfully"

The other possible error message is below:

“message”: “Entry not found for supplied client/app Id or token”

6.4.6 MRDCREDXA - Delete Credentials Store Entry

We can use the program MRDCREDXA with “DELETE” method. We have to supply the token as the query
parameter. We can also supply the client Id and application Id. The first priority is given to client Id and
Application Id but if either of them is blank, the next search is made with the token which is a mandatory
query parameter.

Below is the URL to this request:

https://dev.mdcms.ch/dverma/mrdcredxa?clientId=POSTMANREQ6&applicationId=MDREST4IAPP&token=eyJd
hbGci0iJIUzIINiIsInR5¢cCI6IkpXVCI9.eyJzdWIiO1iIxMJMONTY3ODkwIiwibmFtZSI6IkpvaG4gRG91TIiwiaWF0Ijox
NjIxODY2NTQyLCJleHA10jk2MHO .WpsKn S5FVZrGPUSR8LHe-RA2NJ-g5Axa 9XNNwVadr08

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 56 /167

https://dev.mdcms.ch/dverma/mrdcredxa?clientId=POSTMANREQ6&applicationId=MDREST4IAPP&token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNjIxODY2NTQyLCJleHAiOjk2MH0.WpsKn_5FVZrGPUSR8LHe-RA2NJ-g5Axa9XNNwVadr08
https://dev.mdcms.ch/dverma/mrdcredxa?clientId=POSTMANREQ6&applicationId=MDREST4IAPP&token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNjIxODY2NTQyLCJleHAiOjk2MH0.WpsKn_5FVZrGPUSR8LHe-RA2NJ-g5Axa9XNNwVadr08
https://dev.mdcms.ch/dverma/mrdcredxa?clientId=POSTMANREQ6&applicationId=MDREST4IAPP&token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNjIxODY2NTQyLCJleHAiOjk2MH0.WpsKn_5FVZrGPUSR8LHe-RA2NJ-g5Axa9XNNwVadr08

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

Below would be the response:

{

"message": "Token deleted from database successfully"

The other possible error message is below:

“message”: “Token not found”

6.4.7 MRDCREDXB - Retrieve the token using client Id and application ID

We can use the REST API MRDCREDXB with “GET” method with two query parameters (i.e. clientld and
applicationld).

Below is the URL to this request:

https://yourserver/mdrst/mrdcredxb?clientld=POSTMANREQ6&applicationld=MDREST4IAPP

Below is the response:

"authToken":
"eyJThbGci0iJIUZIINiISInR5cCI6IkpXVCI9.eyJzdWIi0iIxMIMONTY30DkwIiwibmFtZSI6IkpvaG4gRGILIiwiaWF0
Ij0xNjIxODg3NDkyLCJ1leHAiOjk2MHO .UhExAux7LX7mLttk2mJomGgaS6cDFoN-gE53DN8fBKs",

"refreshToken":
"eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCI9.eyJzdWIiOiIxMIMONTY30DkwIiwibmFtZSI6IkpvaG4gRGO1IiwiaWF0
IjoxNjIxODg3NDkyLCJleHAIOJk2MCwicmVmemVzaF92YWx1Z2SI6I11J1Z2nJlc2hfVmFsIn0.DEpnbVPfrIvEbjgACIkWyp
8kv_1r05Xjix0OzvjgjRQw"

}

6.4.8 MRDCREDXB - Refresh JWT token

We can use the REST APl MRDCREDXB with “POST” method. We have to supply the values to be updated along
with the Client Id/Application Id or auth token. The first priority is given to client Id and Application Id but if
either of them is blank, the next search is made with the token.

This API will update the Credentials Store record for this token by using the current date as the start date or
“iat” in the payload and then update the token and refresh tokens using the stored expiry period and expiry
unit from the Credential Store accordingly

Below is an example URL to this request:

https://yourserver/mdrst/mrdcredxb

requestBody payload:

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 57 /167

https://yourserver/mdrst/mrdcredxb

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

"

'clientId":"POSTMANREQG",
"applicationId":"MDREST4IAPP",

usageType" :"(

~n
-y

dType":"T",
":"eyJhbGciOiJIUzI1INiIsIn
FOIjoxNzE2MjM5MDIyLCJyZl

58860"

kwIiwibmFtZSI6Ikpva
ifQ.nzaoRjsDDY9 ytjwOmaE6

PXVCJI9.eyJzdWIi01iIxMIMONTY 30
V1IjoiUmVmcmVzaF9

"message":

"authToken":
"eyJhbGci0iJIUzI1NiIsInR5cCI6
IjoxNjIxOD

iwibmFtZSI6IkpvaG4gRGI1IiwiaWEO

JIUzI1NiIsInR
jMSMDIyLCJyZWZyZX

¥ mFtZSI6I aG4gRG91IiwiaWFO
IjoxNzE2M ¢ j aE6eQBgYnfeuRcLPsB

dh358860

If the refresh token is invalid or expired, relevant messages will be displayed.

6.4.9 MRDCREDXM - Retrieve all fields from MRDCREDX

We can use the REST APl MRDCREDXM with “GET” method to get all fields from MRDCREDX file. We can also
use this with two query parameters (i.e. clientld and applicationld).

Below is the URL to this request:

https://yourserver/mdrst/mrdcredxm
or

https://yourserver/mdrst/mrdcredxm?clientld=POSTMANREQ7&applicationld=MDREST4IAPP

6.4.10 MRDCREDXM - Insert or update credentials into MRDCREDX

We can use MRDCREDXM API with “PUT” HTTP method to add or insert token details as per supplied clientld
and applicationld in the request body. If supplied clientld and applicationld will be available in the MRDCREDX
(Token Credential store) file, it will update the record of MRDCREDX file. If supplied clientld and applicationid
will not be available in MRDCREDX file, APl will create new record in the MRDCREDX (Token Credential store)
file.

Below is an example URL to this request:

https://yourserver/mdrst/mrdcredxm

requestBody payload:

{

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 58 /167

https://yourserver/mdrst/mrdcredxm
https://yourserver/mdrst/mrdcredxm?clientId=POSTMANREQ7&applicationId=MDREST4IAPP

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

"clientId": "POSTMANREQ7",

"applicationId": "MDREST4IAPP",

"usageType": "A",

"credType": "T",

"extendedOpt": "S",

"alg keys": "MAT",

"authToken": "StuartMilliganManualaccesstoken20221114",

"userName": "Jhon",

"password": "jhonpassword",

"payload": " eyJzdWIiOiIxMjMONTY3ODkwIiwibmFtZSI6I11lvdXJOYW11IiwiaWF0IjoxNj

YONTI2MTEwLCJleHAiOjM2MDBI",

"clientSecret": "This is my test secret for manual access token",

"publicKey": "test public key",
"privateKey": "test privatekey",
"authServer": "MDRDEMOD",
"authPortNumber" :2525,
"tokenServer": "MDRDEMOD",
"tokenPortNumber": 111,
"refreshMethod": "A",
"refreshToken": "Testrefresh token",
"authTokenExpiry": 3600,

"refreshTokenExpiry": 3600,

"timeUnitOfMeasure": "*seconds",
"tokenIssuer": "Stuart Milligan",
"issueUserjob": "MDRDEMOD/QTMHHTTP/510173",
"updateUserjob": "MDRDEMOD/QTMHHTTP/510173"

Below would be the response:

When supplied clientld and applicationld will not been available in the MRDCREDX file:

{
"message": "Token Created",

"authToken": "StuartMilliganManualaccesstoken20221114"

When clientld and applicationld will be available:

{

"message": "Entry Updated successfully"

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com

59/167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

6.4.11 MRDCREDXM - Delete Credentials Store

We can use MRDCREDXM REST API with “DELETE” HTTP method. We have to supply the clientld and
applicationld as the query parameters for deleting the entry from the MRDCREDX (Token Credential store) file.

Below is the URL to this request:
https://yourserver /mdrst/mrdcredxm?clientid=MDREST4IAPP&appid=MDREST4IAPP

Below would be the response:

{

"message": "Token deleted from database successfully"

The other possible error message is below:

{

"message": "Token not found"

MDRest4i Coding Standards

In order to make it easy to understand various things in MDRest4i, the product has predefined coding
standards which have been used across both the product and the demo application. You will find these coding
standards in MDRest4i sources (i.e. templates, copybooks and programs) under MDRST library as well as in the
TIDEMO library. Standards make the code easier to read and understand, by differentiating between local and
global variables, between different types of variables and declarations. This prevents any ambiguity in the
situations where the global variables are imported from one of the MDRest4i modules/service programs.
Below are the details about the different types of objects/variables and the pattern of their definition:

Type of Entity Global Scope Local Global Scope Comments
(within procedure | (Import/Export)
module) scope
Work Field Ww_ WL_ WG_
Array R_ RL_ RG_
Terminal Index _ IL_ 1G_
Indicators N_ NL_ NG_
Constants C_ CL_ CG_
Data Structures D_ DL_ DG_ Could be normal DS or array of DS

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 60/167

&

8.1

MIDRANGE DYNAMICS

providing innovative IBM i solutions

MDRest4i User & Reference Guide

DS Subfields S_ SL_ SG_ Could be normal subfield or an array
Parameters P_ PL_ N/A Could be normal variable, data structure
or an array
Pointers T_ TL_ TG_
Subroutine Z_ ZL_
Names
Procedure Any name except starting with Z
names
Copybooks Any logical name
DSPF File DD
Field(DDS)
Printer File DP
Field(DDS)
RPG Programs LXR
CL Programs LXC
Data Areas LXD
Physical File LX
Name
Logical File Ending with
Name "
Record Format FileName+F
or similar
Physical/Logical Any two char prefix uniform to that file based
file fields on file content

MDRest4i Standard Logging REST API using a Physical File (MDRLOGS)

In this section we describe how to log the request and response details from a REST service in a database file -
MDRLOGS.
MDRLOGS — MDRest4i Logging Database File

By default, this file stored in MDRSTXXXX library. It is updated during the execution of the APl or consumer. To
use a different library ensure a version of the file is above the MDRST in the library list when executing the
MDRREADDQ program or Consumer.

Below is the structure of this file:

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 61/167

&

8.2

8.3

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

Parameter Attributes Description

ENTSEQ INTEGER This is the first field for maintaining the sequence no.

ENTUID CHAR(36) Entry Unique ID. This value is created at the beginning of the
execution of a REST APl or Consumer program. It is created
using the following algorithm:

“SRV” if its server “CNS” if it's Consumer + jobno + time stamp
when APIl/consumer starts executing

OBJNAME CHAR(10) Here we maintain the object name.

REQTYPE CHAR(1) In this field we maintain the request type. “S” for REST services
and “C” for consumer programs.

ACTION CHAR(10) In this field we maintain the action. (ReqHDR, ReqBDY, RspHDR,
RspBDY, ReqQRY, REQHDRCUST).

TIMESTAMP TIMESTAMP In this field we are adding the current timestamp value.

DATA VARCHAR(32500) | In this field stored the data of request headers, request body,
response headers, response body and query parameters.

CONTN CHAR(1) In this field we maintain the continuation. If data is greater than

(32500) bytes, we write here “Y” that’s mean pending data
available in the next sequence and if data is less than 32500
here we will set the value as “N”.

Logging flow for a REST API Program

To reduce performance degradation of a REST API that logs to MDRLOGS database file, logging details are
captured and written in two separate programs.

If the indicator ng_Logfile = *On, the logging details(as specified in data area MDRST/ MDRLOGFLAG) are
gathered during execution, and written to a dataQ (if not specified in the z_Custominit subroutine, it uses
MDRST/MDRLOGDQ by default) as a single string.

A separate batch program “MDRST/MDRREADDQ” reads the dataQ and writes the records out to the
MDRLOGS file in the library list of the batch job.

Components

These components are all pre-supplied in library MDRST, but be created and used specifically depending on

requirements

Component Description

MDRLOGS Physical File — used to hold individual logging elements for REST APIs and REST
Client/Consumer programs. See definition above

MDRLOGDQ DataQ - used to hold logging details from REST API execution. Pre-Supplied in MDRST

Default Creation command
CRTDTAQ DTAQ(MDRST/MDRLOGDQ) MAXLEN(16000) SEQ(*KEYED) KEYLEN(52)

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 62 /167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

SIZE(*MAX2GB 10) AUTORCL(*YES) TEXT('MDRest4i API Logging Data Queue')

The two mandatory settings for creation of this dataQ are:
SEQ(*KEYED) KEYLEN(52) — they are hardcoded into the MDRest4i logic and cannot be
changed

The key used for each message in the dataQ is made up of three parts:
e pos 1-36 — key that will be used in the MDRLOGSF made up of: SRV + Job number +
Timestamp
e pos 37 — hardcoded dash “-“
e pos 38-47 — name of REST API program used as object name in MDRLOGSF
e pos 48-52 — counter to indicate a single record or multiple records for a APl log detail
* if all data is in one dtaq record, then this is set as 00000
* if the logging string exceeded the dtaq max record size, this = 00001 upwards
* pos 6-100 = Alpha numeric value which is the unique ID number: SRV + Job number +
Timestamp.
for example: “SRV254397_2022-06-10-12.57.56.490000-BIKEAPIL 00000”

MDRLOGFLAG

Data Area — used to specify what details are saved in MDRLOGS file

Here are the options as defined by this data area

d s_reqpath 1 1
d s_regmth 2 2
d s_gryparm 3 3
d s_reqbody 4 4
d s_reqtohost 5 5
d s_reqfclient 6 6
d s_remoteuser 7 7
d s_srvaddr 8 8
d s_srvname 9 9
d s_srvport 10 10
d s_rsphdr 11 11
d s_rspdta 12 12
d s_rspbody 13 13
d s_reqcusthdr 13 13

Here are some example commands that can be used to set the data area:

* Most Typical
CHGDTAARA DTAARA(MDRST/MDRLOGFLAG (1 13)) VALUE(YYYYNNNNNNYYY)

* No JSON bodies
CHGDTAARA DTAARA(MDRST/MDRLOGFLAG (1 13)) VALUE(YYYNNNNNNNYYN)

* No JSON request bodies
CHGDTAARA DTAARA(MDRST/MDRLOGFLAG (1 13)) VALUE(YYYNNNNNNNYYY)

* No JSON RESPONSE bodies
CHGDTAARA DTAARA(MDRST/MDRLOGFLAG (1 13)) VALUE(YYYYNNNNNNYYN)

* Maximum setting for API log all aspects of API
CHGDTAARA DTAARA(MDRST/MDRLOGFLAG (1 13)) VALUE(YYYYYYYYYYYYY)

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 63 /167

&

8.4

8.5

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

MDRREADDQ

RPG Program — Program used to read dataQ entries created by REST API and write as
individual records in MDRLOGS file

Parameters:

DATAQ - 10 *CHAR — (MANDATORY) dataQ to be read

LIB — 10 *CHAR — (MANDATORY) library where the above dataQ is found

WAIT — Number — (OPTIONAL) specify number of seconds it will wait before checking if above
dataQ has messages on it. If not specified the default wait time is 5 seconds

Notes:
e This program can be submitted multiple times in the same batch Subsystem to speed up
dataQ reads

e The source for this program can be found in MDRST/QCUSTOMSRC
e PF MDRLOGS MUST be in *LIBL when this program runs

Variables used to enable logging to MDRLOGS

These variables are all pre-supplied and set with default values in MDRST/QRPGLESRC.MDRESTDFN copy book.
If used they must be set in the z_Custominit subroutine of the REST API program

Variable Description
ng_logFile Indicator - Sets logging the request and response detail for the APl into the MDRLOGS file
w_dgname 10A — dataQ logs will be written to
If not specified defaults to MDRLOGDQ
w_dglib 10A — library containing above dataQ
If not specified defaults to *LIBL
w_dqglen 5P 0 — Maximum length of each message. If the string created by logging exceeds this value
then it wraps.
Notes:
e If not specified it defaults to 1600
e Ifsettoa number lower than the size of the string of gathered logging detail, it will wrap
and write multiple messages to the dataQ using a counter in the dataQ key to
differentiate records
e If multiple messages are used to write a single execution log details on the dataQ, the
counter in the key starts with 00001. Otherwise a default value of 00000 is used where
a single dataQ message was used to write the details for a specific APl execution
Procedures
Procedure Description
logDgNow() BY default the dataQ is written to at the end of the execution of the rest API. To add

alogging entry to the end of the log entries currently loaded into memory, AND force
the instant writing to the dataQ of the entries already loaded into memory use this
procedure.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 64 /167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

It accepts two parameters:
Action — 10A — This appears in the MDRLOGS.ACTION column
Data — 1024 — This appears in the MDRLOGS.DATA column

This procedure can be found in copybook MDRST/QRPGLESRC.LXRRESTP and is
added at t end of all REST API’s

A typical usecase is to add a timestamp after all parsing is complete before business
logic is called in a z_ProcPOST subroutine. For example:

produces this rest in MDRLOGS:

writeLogsF()

This writes a logging entry for MDRLOGSF into memory. Each subsequent call to this
procedure adds an entry at the end of the previous entry into a pointer in
memory(tg_logdta).

It accepts three parameters:

Action — 10A - This appears in the MDRLOGS.ACTION column
Data — 1024A — This appears in the MDRLOGS.DATA column
Datalength — 10i 0 — Length of the value in Data parameter above

This is used by MDRest4i to add the values specified in data area MDRLOGFLAG. For
example here is the logic used in MDRST/QRPGLESRC.LXRRESTC to write the POST
request body entry:

This procedure is in module LXRGLOBAL and bound into all REST API's and
Consumers. Here is an example of the data written for a POST method REST API:

PrcLogDta()

This procedure writes the contents tg_logDta to the dataQ. It has no parameters.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 65/167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

8.6

providing innovative IBM i solutions

Useful data queue utilities

8.6.1 Display current messages on a data queue

8.6.2 Display the Attributes of a data queue

8.6.3 Display the messages on a data queue

8.6.4 Clear all messages in a data queue

10

10.1

Logging Consumer in the DB file (MDRLOGS)

If you would like to enable logging in database file, set the variable “ng_logfile” to *On in “Initialize” procedure
of your consumer. When this indicator is set ON, the outgoing request as well as incoming responses are
logged directly into the MDRLOGS file.

MDRest4i Standard Logging using the IFS

Logging the REST Service using the IFS

If you would like to log the incoming request and outgoing response from the API created using MDRest4i, set
the variable “n_savelFSSwitch” to *On in “z_Customlnit” subroutine of your program running as REST service.
When this indicator is set ON, the incoming request as well as outgoing responses are logged. The default log
directory is ‘/MDREST4i/logs/” but if you want to log separate APIs in some specific IFS folder, set the variable
“w_savelFSPath” with the folder name like below but it should have complete path including the file name:

w_saveIFSPath = ‘/MDREST4i/myfolder/mycustomlogs/LogFileddmmyyyy.txt’;

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 66 /167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

If “w_savelFSPath” is not initialized, the logic picks the default path from the data area “DFTLOGDIR” under
library list (i.e. from MDRST if it’s in library list). The data area is shipped with the value “/MDREST4i/logs/”. If
for some reason, the variable “w_savelFSPath” is blank and the data area DFTLOGDIR is not found in library list
(e.g. MDRST is not in library list), the hard-coded directory “/home/” is considered to creates the IFS logs. The
name of the log file is “LOGLOGS_" followed by timestamp followed by “.txt”. Below is an example of how the
log file appears. The file name is “/MDREST4i/logs/LXRLOGS_2019-04-01-02.07.32.417000.txt".

#H##44 444444 REQUEST START #########4444444
######44444 REQUEST HTTP-HEADER ########4H4 444444
Request to Host Address= mddev.mdcms.ch:2517
Request from client= 1.22.72.106
Server Address= 10.15.1.34
Server Name= mddev.mdcms.ch
Server Port= 2517
Request Method :POST
Query Parameters

###4# #4444 REQUEST BODY BEGIN ##########4##4

"genmbrname": "CUSTSMM",
"gensrcf": "QRPGLESRC", "genlib":"LXRDEMO201"
}
FHEFFHFHFF REQUEST BODY END ###########HHH###
#H#4 4444444 REQUEST END ###########4#44#4
###4 4444444 RESPONSE BEGIN ############4444#
#######H### RESPONSE HEADER ############FH#4#
Content-Type: application/json; charset=UTF-8
Status: 200 OK
LXRPBGNKEY :
LXRPENDKEY :
LXRPAGETYP:
LXRNBRRCD: 0
#4444 RESPONSE HEADER END ######### 4444444
#H##4 #4444 #4# RESPONSE DETAIL BEGIN ###############4
{

"SrcMbr": "CUSTSMM",

"SrcFile": "QRPGLESRC",

"SrcLib": "LXRDEMO201",

"ObjLib": "LXRDEMO201",

"Description": "A description of the program as it executes for th",
"Compilation": "Success"

}

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 67 /167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

###f#H#f### RESPONSE END #########4F4H4H#4

10.2 Logging the request/response in REST Consumer

While working with the MDRest4i REST consumers (SSL or non SSL) bound via MDRCNSM, the configuration
settings are performed in “INITIALIZE” procedure. This procedure is used in MDRCNSM and LXRSOAPCM for
REST and SOAP services respectively. You can set the indicator “ng_saveRestSwitch” to *On and the variable
“wg_saveRESTPath” should be set to the path of IFS file including the file name (e.g. below):

MDRestdi’ ;
o, 17

wg_p:
wg_authstring =

wg_contentType = ’'applications/json; ct
wg_htt thod = 'GET';

wg_m ;
[} 13 _m lela I:4
wg_portMumber

W rverlP= ;
wg_hostMame = ‘mddev.

1

1

1

1

1

1

1

1

1

1

1

1

1

1
13°
1

1

1

1
13

Below is the output in IFS file:

###REQUEST##START###

Attempting Non-SSL connection to the target
###REQUEST##HTTP-HEADER# ##

Request Length = 220
###REQUEST##DETAILS###

GET http://mddev.mdcms.ch:2517/devendl/CLM DET?client=1l&policy=1&claim=4
HTTP/1.1

Accept-Encoding: deflate
Host: mddev.mdcms.ch.com:2517
Connection: Keep-Alive

User-Agent: Apache-HttpClient/4.1.1 (java 1.5)

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 68/ 167

MIDRANGE DYNAMICS

providing innovative IBM i solutions

###REQUEST##END# ##

###RESPONSE##START###
200
715

Response Status

Response Length

#RESPONSE#HTTP-HEADER#
HTTP/1.1 200 OK
Date: Mon, 01 Apr 2019 06:53:59 GMT
Server: Apache
Access-Control-Allow-Origin: *
Access-Control-Allow-Headers:
Content-Length: 387

Keep-Alive: timeout=300, max=100

Connection: Keep-Alive

Content-Type: text/json; charset=IS0-8859-1

#RESPONSE#JSON-BODY #

{"claim": [

{

"client": "1",
"policy": "1",
"claimNumber": "4",

"claimRegistration”": "AAO1BB GP",

"claimIncidentDate": "2016-05-18",

"claimDescription": "Fit fallen thorn tree.",
"claimTyresDmg": "2",

"claimStatus": "O",

"claimAmount": "2300.00",

"claimAmountPaid": ".00",

"claimAuthDate": "2001-01-01",
"claimDatePaid": "2001-01-01",
"claimSupplier": "LS001",

"claimRepReason": ""

}
1}

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com

MDRest4i User & Reference Guide

LXRPBGNKEY, LXRPENDKEY, LXRPAGETYP, LXRNBRRCD

69/167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

10.3

11

111

providing innovative IBM i solutions

###RESPONSE# #END# # #

10.2.1 Appending to same IFS log file —

We have an exported indicator “ng_appendIfsF” which is by default switched to *Off. You can declare this with
“import” keyword in the program calling “GskConsume” procedure. When this indicator is set to *On, the IFS
file is opened in append mode and the consumer will then log all the requests in the same IFS file.

If append mode is requested, the first attempt is made to open the file in append mode but if the file doesn’t
exist, append request is ignored and file is opened/created normally. Below is how the appended log looks
like.

Browse :

F3=Exit F10=Display Hex F12=Cancel F15=Services F16=Repeat find F19=Left FZ0=Right

Logging the request/response in SOAP Consumer

While working with the MDRest4i REST consumers, the configuration settings are done in “INITIALIZE”
procedure like REST consumers but here the variables are different. The indicator to enable logging the
request is “ng_saveXMLSwitch” and the variable for the IFS Path is “wg_saveXMLPath”. The processing of IFS
logs along with its output remains the same as in above case of REST consumers explained above.

Custom Logging

MDRest4i has been built with logging and troubleshooting in mind and provides both a system as well as user
controlled logging setup. This allows for the logging of the incoming service requests as well as the requests
processed via consumer programs systematically by switch. This is easily extended according to your
requirement by using the user controlled logging method. This section covers the user controlled logging for
Consumers and Services built with MDRest4i

REST Consumer Logging
This is the custom logging in a DB2 PF for a REST Service

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 70/167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

11.1.1 LXRCLTLOG File

The standard procedures used in the consumer programs generate the logs of the Outbound and Incoming
requests in LXRCLTLOG file in MDRST library. This is enabled by setting the “ng_customlog” indicator to *ON.
This indicator is import type declaration in the SOAP and REST consumer template based programs. Below is
the content in this file:

Seq Fields

1 | Client LogID

2 | Client Log Occurrence timestamp

3 | Client Log Application name

4 | Client Log Destination Address

5 | Client Log Service Type

6 | Client Log Level --(1=CRIT,2=SEVR,3=ERR,4=WARN,5=INFO,6=DBG)

7 | Client Log Message Details

8 | Client Log Running Time

11.1.2 Field Details:

Client Log ID: This is running number incremented by 1 for next event.

Client Log occurrence timestamp: Timestamp of the event logged.

Client Log Application name: The name of consumer application program making service requests
Client Log Destination Address: The URL of the service request from the consumer.

Client Log Service Type: Type of the service e.g. REST (JSON) SOAL(XML).

Client Log Level: Logged message level/severity

Client Log Message Details: Details about the activity e.g. nnn bytes received, xxx error occurred.

Client Log Running time: Duration of consumer execution including service request/response.

11.2 REST Producer/Service Logging
This is the custom logging in a DB2 PF for a REST Service

11.2.1 LXRSRVLOG File
The standard procedures used in the consumer programs generate the logs of the Outbound and Incoming
requests in LXRSRVLOG file in MDRST library. This is enabled by setting the “ng_customlog” indicator to *ON.

This indicator is import type declaration in the SOAP and REST server template based programs. Below is the
content in this file:

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 71/167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

12

12.1

12.2

providing innovative IBM i solutions

Seq Fields

1 | Server Log ID

2 | Server Log Occurrence timestamp

3 | Server Log Application name

4 | Server Log Destination Address

5 | Server Log Service Type

6 | Server Log Level (1=Critical, 2=Severe, 3=Warning, 4=Info, 5=Debug)

7 | Server Log Message Details

8 | Server Log Running Time

11.2.2 Field Details:

Server Log ID: This is running number incremented by 1 for next event.

Server Log occurrence timestamp: Timestamp of the event logged.

Server Log Application name: The name of consumer application program making service requests
Server Log Destination Address: The URL of the service request from the consumer.

Server Log Service Type: Type of the service e.g. REST (JSON).

Server Log Level: Logged message level/severity

Server Log Message Details: Details about the activity e.g. nnn bytes received, xxx error occurred.

Server Log Running time: Duration of consumer execution including service request/response.

MDRest4i Exception Handling

Indicators and general Info

MDRest4i has inbuilt exception handling for everything. The exception handling is enabled by default but the
indicators have been provided to control this. The copybook member LXRERRPRO has the prototype for the
procedure “LogException” defined in LXRERRH module. This module is added to LXRGLOBAL binding directory
and therefore no additional binding directory is required to use the exception handling. All the exceptions
encountered either in the modules or in MDRest4i service copybook logic are logged in LXERRLOG file.

Exception Handling in Providers

By default, the exception handling is enabled in a provider generated using MDRest4i.

12.2.1 LXRRESTC Monitor Function

The LXRRESTC copybook (found in MDRST/QRPGLESRC) controls drives the flow of the MDRest4i Provider. It
uses the RPG Monitor function two catch any exception lower down in the stack — provided the exception
happens within the original boundary. For example any procedure bound in to the provider, that crashes with

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 72 /167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

an exception, will return control to the Monitor statement in LXRRESTC, and the on-error function will be
triggered. A called program will not be handled as it is outside the boundary of the Provider program.

1. If the on-error function is triggered, the following occurs:

2. The initial value of an error message with the exception type, number and data(if possible) is set,

3. The procedure LogCriticalError is called, passing this initial message part. LogCriticalError is
customizable and is provided in MDRST/QCUSTOMSRC.

4. The error message is then written as a JSON object with a severity level of 30, as a response in JSON
format using the CritErrJson() function.

5. The HTTP Status and Reason are set in LogCriticalError() procedure

6. The subroutine z_prereturn in LXRRESTC, then sends this with the JSON error message as a response
to the client request.

From LXRRESTC:

IxrrestcSR contains the entire execution stack of a Provider enabling the encapsulation of any exceptions
within its boundary in the Monitor.

12.2.2 LogCriticalError Customizable Function
This customizable module/procedure is available in MDRST/QCUSTOMSRC. It does the following:

1. Extract Program and Job Info from PSDS

2. Create the complete Error message for the JSON response

3. Writes the error message extracted in copybook LXRRESTC, and any additional exception info to the
LXERRLOG file, irrespective of logging status

4. Setthe HTTP Status code and Reason text

5. Return control to the Provider(LXRRESTC)

12.2.3 Exception Log File

The exceptions are logged in “LXERRLOG” file in MDRST library. The module LXRERRH has this file in user open
mode.

By default, the logging happens in MDRST library and the library name is fetched from “LXRPRDDA” data area
under MDRST library.

The global variable “wg_Prddalib” is exported from LXRERRH module and it is available as “import” declaration
in MDRESTDFN copybook. If you want the logs to be written to some non default MDRST library, just initialize
this variable with the library name in “z_Customlnit” subroutine of your API. The file by default can contain up
to 10020000 entries and if the entries are added after this count, it will throw an exception. The purging
function (explained below) can be used to periodically clear the exception logs table.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 73 /167

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

12.3 Purging the Exception Logs (using IBM Job Schedular)

13

13.1

13.2

The command MDRSETPURG allows to schedule the purging of this file at regular intervals. This command
adds a job in the IBM job scheduler such that it can run at specified frequency and removes the older records
from LXERRLOG file. The number of records deleted in a specific execution instance are written to the same log
file LXERRLOG.

MDRestd4i Purging Setup (MDRSETPURG)

Type

U e e e MDRST NETE

Purge Freqt CY + v e K *0ONCE, =*WEEKLY, =MONTHLY
Schedule Date *MONTHEND x ENT, =MONTHSTR...
‘ edule Day *NONE : I, *TUE, =WED, =*THU..
Purge before days 30 Number
JOB Description T RPRF Name, =*USRPRF

Library e e LIBL Name, *LIBL
JOB Queue e e * JOBD Name, =*=JOBD

Library e e e *LIBL Name, =LIBL

User Profile *CURRENT Mame, =*CURRENT

Bottom
xit Fd=Prompt 5=Ref F12=Cancel F13=How to use this display
fore keys

05/042

The Product library is mandatory entry and should be the library name of the product e.g. MDRST. The purge
frequency can be specified as monthly, weekly or once. Scheduled date could be *CURRENT, *MONTHSTR,
*MONTHEND or *NONE. You can also schedule the job on required day of the week.The parameter “Purge
before days” is set by default to 30 which means delete the exception log entries older than 30 days but it can
be changed. Rest are the standard parameters.

HTTP Headers in MDRest4i

Using In-Bound Headers in the HTTP Request for a Provider

The procedure “GetHdr” can be called to retrieve the value of the required HTTP header. The prototype of this
procedure is defined in MDRESTDFN copybook. More details can be found in sub-section “REST
Provider/Handling” under the section “MDRest4i Function/Variable reference”.

Adding HTTP Headers to a MDRest4i API Provider Response

The custom headers can be added by calling “AddHdr” procedure supplying first parameter as the header
name and second parameter the header value. More details can be found in sub-section “REST
Provider/Handling” under the section “MDRest4i Function/Variable reference”.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 74 /167

‘) MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 75/167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

14

14.1

15

providing innovative IBM i solutions

MDRest4i Data Area settings

The MDRest4i product makes use of some data areas for the settings/behaviour which would vary at different
customer site depending on the requirement. As an example, the MDRest4i generators which generate the
source member using the swagger need to know the source file and library where the source members should
be created. Likewise, the IFS log directory would be different for different customers. Such aspects are
therefore controlled by data areas and the user can make the relevant changes after going through this part of
the documentation.

LXRSRCDTL
Library: MDRST

Description: This data area holds the source file and library name where open API generator should
produce the APl requested from the swagger APl generator as the post http request.

Upgrade V8 and V11 to V12 Programs

There are three approaches to upgrading existing code that can be adopted:

e Rebuild the APl or consumer in V12 and manually copy in your business logic code

e Manually edit your existing code to the V12 standards (copy books, binding directories etc) and
recompile over latest version of MDRST

e Use the MDRUPDVER command to automate the changes required for V12 plus any manual edits
required after the automated upgrade processes (MDRUPDVER and MDRFIXIDX commands) have
been run

In general the following structural changes have been made:

1. The module LXRSMSTGI is changed to MDRCNSM and the copybook LXRSMSTGJP is renamed to
MDRCNSP. This affects the existing consumer programs where “LXRSMSTGJP” copybook has to be
replaced with MDRCNSP copybook. The entry of module LXRSMSTGJ has been replaced by MDRCNSM
in the binding directory and therefore no action with regards to the module name changes.

2. Binding directories are combined together to form only two binding directories. LXRGLOBAL contains
everything except the modules specific to consumer processing and BNDZIP contains the modules
specific to consumer processing. You are therefore required to add lesser number of binding
directories in the REST services or consumer programs. The existing binding directories are not
changed and therefore your existing programs shouldn’t have any impact of this change.

3. MDRest4i now uses YAJL and as a result the CallBack functionality has been deprecated in both
Consumers and Producers. This means the CallBack subroutines and Procedures can now be deleted
from your code. If you need CallBack type functionality please contact Midrange Dynamics and we
would be happy to help you create new structures using YAJL Tree functions

4. InYAlLarrays start at 1 and not 0 when extracting values from JSON. So the _

.”Ioops in your code that use jPathvV jPathN, JPathE, JPathU, a fix command MDRFIXIDX has been
written. See the section below on how to run this to automatically fix these statements in your code.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 76 /167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

5. Ifin the REST APIs or consumer program added definition of w_idx1 index in D spec, please remove
this. Because it is already defined in the MDRESTDFN copybook.

6. YAIJL for JSON writing and parsing uses a service program: MDRJSONY which can be found in the
library MDRST. Therefore, MDRST must be in the JOB Libl whenever you execute and APl or Consumer
program.

7. If the APIs and consumer programs using “JGet” to get the value from JSON, it will be replaced with
‘JPathVv’.

8. JPATHV no longer returns *notFound when a JSON key is not fond in the payload. It returns blanks

9. w_regbody is no longer available as a variable in the REST Producer template. It has been replaced
with a procedure:
Its accepts three parms, but only the first is mandatory. It must be called in one of the method
subroutines and the mandatory parameter must be defined as 5242880 AlphaNumeric.
For more details on this function see the 18.4.8 GetRegBody section of this guide

15.1 Update REST APIs and consumer programs to V12

15.1.1 MDRUPDVER Command

We can use this command for updating the REST APIs and consumer programs to using V12 instead of V8 or
V11. As per below:

From the IBMi command line execute the following:

e ADDLIBLE MDRST & press enter
e MDRUPDVER & press F4

The following screen will appear:

Parameter Description

Source Library Where the REST APIs and consumer program available.
Source File The source file where the program source is available.
Source Member There are two functions If we want to update only one

program, we need to provide here the program name. If we
want to update all programs of given source file, provide the
value as “jya\r” .

Backup Library Specify the library name for making a backup before updating in
V12.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 77 /167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

Backup File Specify the Source file name for making the backup before
updating in V12. It supplied source file not available then it will
create.

Recompile Here we can define Y or N. If we want to recompile the program

after update, set the value Y and If we don’t want to recompile
the program, we need to set N. By default, setis Y.

To see the effects of this command, please have a look at sections 15.3 and 15.4 To see before and after
changing the code of REST APIs and consumer programs.

15.2 Fix “for” loops in when extracting JSON values with JPath...

15.2.1 MDRFIXIDX Command
From the IBMi command line execute the following:

e ADDLIBLE MDRST & press enter
e MDRFIXIDX & press F4

The following screen will appear:

Parameter Description

Source Library Where the REST APIs and consumer program available.
Source File The source file where the program source is available.
Source Member There are two functions If we want to fix only one program, we

need to provide here the program name. If we want to fix all
programs of given source file provide here value as “{3EI"

Left Comment If we want to add left comment in program where this
command will make the changes.

After running command, it will change program code where “for” loop will be executing with ”"and
recompile. It will change code like below.

Code before change:

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 78 /167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

Code after changed by MDRFIXIDX command:

Changed by MDRFIXIDX at 2022-11-16-08.15.03.627000

15.3 V8 to V12 — Manual edits to existing code

15.3.1 Consumer Code
To upgrade the V8 Consumer programs to V12, please apply below changes

- The following binding directories will be replaced:

With

- The following copybooks must be replaced:

With

- Prototype definition of CallBack should be removed:

This code that executes CallBack must also be removed.

This code:

Is replaced with this code:

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 79/167

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

This code:

Is replaced with this code:

The CallBack procedure code must be removed.

Add the following code at the bottom part of Initialize procedure before /end-free statement of this
procedure:

Replace this line of code:

With :

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 80/167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

15.3.2 Producer Code
To upgrade the V8 producer programs to V12, please apply below changes.

- The following binding directories will be replaced:

With

First, we need to update the copybooks. The following copybooks MUST be deleted:

And replaced with this line, on the line before the Ixrrestc copybook and AFTER the define statemenst as
below:

These line below will be replaced:

With this code:

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 81/167

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

If the REST APIs have query parameters, we need to made changes in the z_setMethod Subroutine’s code.

Example before changing:

After changing:

beginObject (' "):
addChar ('Get': 'Mandatory Parms:
endObject (' ')

This code:

Is replaced with this code:

The CallBack procedure can be removed:

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 82 /167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

Please also remove the following two lines:

and

In the Some producers or consumer programs have available bellow's definitions. So please remove them also.

15.4 v11 to V12 — Manual edits to existing code

15.4.1 Consumer Code
To upgrade the V11 Consumer programs to V12, please apply below changes

First, we need to update the copybooks. The following copybooks MUST be deleted:

And replaced with:

The following lines must be removed:

This code:

Is replaced with this code:

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 83 /167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

The following code:

Is replaced with this code:

Below code will be removed from the Program:

15.4.2 Producer Code
To upgrade the V11 producer programs to V12, please apply below changes:

First, we need to update the copybooks. The following copybooks can be deleted:

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 84 /167

‘ MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

And replaced with this line, on the line before the Ixrrestc copybook and AFTER the define statemenst as
below:

If the REST APIs have query parameters, we need to made changes in the z_setMethod Subroutine.

Example before changing:

After changing:

beginObject (' "):
addChar ('Get': 'Mandatory Parms:
endObject (' ');

If the REST APlIs using ‘JGet’ function to get the value from the JSON, we need to replace it with ‘JPathV’. As per
below:

Before changing code:

After

This code:

Is replaced with this code:

Removed all of the CallBack procedure code below:

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 85/167

&

MIDRANGE DYNAMICS MDRest4i User & Reference Guide

providing innovative IBM i solutions

This must be removed:

This line must also be removed:

In the Some producers or consumer programs have available bellow's definitions. So please remove them also.

Usage of w_reqBody must be replaced with a procedure call.

So the following code:

Will be replaced with this:

it MUST be placed in the boundary of the z_procPOST/PUT/PATCH subroutine/s

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 86 /167

16

16.1

16.2

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

MDCMS Interface

Overview
An MDCMS Level corresponds to an MDREst4i Documenter Environment folder.

The MDCMS developer folder for an OAPI Specification corresponds to the MDrest4i SDK folder for that developer
user.

MDRest4i produces two artefacts:

1. An OpenAPI specification, stored in the developer IFS folder of the MDRest4i SDK server instance. Each MDRest4i
SDK user has their own folder for saving specs. For example a spec called “myapi” created by SDK user
“laxadmin”, would be stored here:

/www/mdrst/specs/cons/Ixradmin/myapi.json
where “mdrst” is the instance of MDRest4i installed, and “Ixradmin” is the user who created the OAPI spec.

2. The generated source code from the OAPI Spec, which is generated into the source file/library specified by the
user in the “Paths” tab of SDK User Interface.

Once the user creates the OAPI spec, and then generates the RPG code from this in the SDK Ul, the user can then
submit an object request to MDCMS. The interface takes care of adding an object request for both the generated RPG
source code AND the OpenAPI specification.

From then on MDCMS controls the promotion of both artefacts using the RFP.

The first promotion will remove the OAPI Specification from the SDK user’s Developer folder, and move it to the SDK
Documenter folder on the same server on the IBMi. Each MDRest4i Documenter environment has its own folder for
saving OAPI specs and HTML documentation for that spec. For example a spec called “myapi” promoted to
environment “RestTest” by MDCMS, would be stored here:

/www/mdrst/specs/docu/RestTest/myapi.json
where “mdrst” is the instance of MDRest4i installed, and RestTest is the MDRest4i Documenter environment key.

When the OPAI Spec and source code are promoted to the next MDCMS level by an RFP, the OPAI spec will be
removed from the previous level and added to the next MDCMS level which will have an MDRest4i Documenter
Environment folder level associated with it in the MDCMS Attribute

To modify an exsiting OPAI specification not in a SDK users development t folder, but in another Documenter
Environment folder, the user can opt to “import from Documenter” option in the MDRest4i SDK. Ans so the cycle can
begin again.

Setup Steps

Add library “MDRST” to any MDCMS level JobD where an APl or Consumer will be compiled/promoted to
In SDK Documenter, create an MDRest4i Documenter Environment for each MDCMS level

Create an MDCMS attribute(for example OAPI) for type *IFS for each level/environment

Create a “Developer Library Naming Template” in MDCMS for the MDRest4i SDK console

Add the command MDRPROM as a command to each MDCMS lvl/attribute

IN SDK Console “Edit Site” dialogue, select “Object Required” from “MDCMS Values” section of dialogue

AN S

16.2.1 Create an Environment in SDK Documenter

Step Comments

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 87/167

p

providing innovative IBM i solutions

MIDRANGE DYNAMICS

MDCMS

Login as an administrator to MDRest4i
Documenter

http://youribmi:yourport/docu/

From clicking the user avatar on the top
right-hand side, select Admin

n & Admin I

= Logoff

From the Administration screen switch on
the MDCMS option

This makes the “Installation Details” tab appear for a Specification,
which are added by MDCMS when the OSAPI is promoted.

Administration

Global

Configure global settings, like brand logo and
name.

RestProd > demo APl add client
SPECIFICATION INSTALLATION DETAILS

/specsidocu/t

@ Swagger

From the Administration screen select the
Environments “Go” button

Environments

Manage Environments and APls

From the Environments list screen, select

Administration > Environments

the o icon on the top right hand side. o
Environments No of APIs UUID Last Modified Actions
MDREST4i Default Environment 16 MDREST4i-Default-Environment 2022-01-23-18.16.22,388581 Iy
Environment 1 13 Environment-1 2022-01-23-18.28.01.602108 B F @
Create a Name for the environment.
The REFFUID value should be noted/copied (‘*W'
- RESTUAT|)
and saved, for the next step in MDMCS.
Select Type as MDCMS. RESTUAT ©
Type
MDCMS URL is for future use MDCMS -
Select Add to save the Environment details MDCMS URL * 0
CANCEL ADD
16.2.2 Create MDCMS Attribute for OAPI Specifications
In MDCMS Add an Attribute
Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 88/167

‘) MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

MDCCMEM T85 Demo Production 10,02, 23
SCRN2 Add Attribute Record 12:39:44

Application/Level . . REST 300

Object Type xIFS System or MDCMS Type
Object Attribute . . OAPI

Description OAPI/Swagger Spec for REST API-CLIENT

Object Library . . . /www/mdrsttl2/specs/docu/RestTest
Source File *IFS, xREQONLY, File

Library *xTEMP, Lib
Dft Source Naming . . ++0OBJNAM++
Dft Source T

Parameter Description

Application/Level As per your current setup

Object Type *IFS

Object Attribute Any name that seems appropriate

Description Any suitable description

Object Library This must correlate to the appropriate MDRest4i Documenter
Environment folder copied or noted in setup steps above

16.2.3 Create “Developer Library Naming Template” in MDCMS for SDK Console

In MDCMS create a new “Developer Library Naming Template” for the appropriate application and level, according to
your setup.

The only value required that isn’t part of a default setting weh adding a new template of this type, is:
“Folder Naming Pattern” for objects only. Everything else can be left as default

Use the following value:

/www/mdrst/specs/cons/++OBJREQ++

where “mdrst” is the instance of MDRest4i installed

Application . TESTO1 *ANY, Application
Level 100 D=xANY, Level
Description . Swagger Dev Checkout

Library Naming Pattern =*USER, Pattern
Objects: xUSER
Source.: x*SAME

Folder Naming Pattern *USER, Pattern
Objects: /www/mdrsttl2/specs/cons/++0BJREQ++

Source.: *SAME

Authority Template for new Libraries: *USER *USER, Template
ASP Device for new Libraries : xSYSTEM *SYSTEM, Device
Authority Template for new Folders..: xUSER *USER, Template
Require at Checkout: Project: N Task: N Subtask: N RFP: N

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 89/167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

16.2.4 MDRPROM - MDRest4i SDK Promotion command
We can use this command to create object request in the MDCMS. As per below:
From the IBMi command line execute the following:

e ADDLIBLE MDRST & press enter
e MDRPROM & press F4

The following screen will appear:

Press the page down key.

Type choices, press Enter.

o Reason as DELETE — When we will supply reason as DELETE, it will delete the record from SDK Documenter
Repo for that from env/Ivl/folder.

e Reason as MODIFY
If the from folder is has “cons” init, (This is where it is still in the USERS development folder). In this case it
will insert a new record in the SDK Documenter repo, based upon the USERS development record for that
OAPI Specification. It will then create a copy of the OAPI .json file from the USERS Development foler, into the
to-Level/Environment folder. After this, it will remove record from MDRDSPC table as per supplied object
name as “ENTITY” and username, and remove the OAPI .json filer from the USER development folder. This
API will no longer appear in the developers specification list in the SDK Console.
If the from folder name is /docu/ - (This is where the OAPI specification is in an MDCMS environment/level
folder) In this case it will insert a new record in the SDK Documenter repo, based upon the from env/folder
record for that OAPI Specification. It will then create a copy of the OAPI .json file from the from env/Ivl, into
the to-Level/Environment folder. It does not remove the existing record from the from older in this scenario

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 90/ 167

‘ MIDRANGE DYNAMICS

providing innovative IBM i solutions

MDCMS

Parameter Description

Reason Provide the reason (MODIFY or DELETE) See comments above
“Reason as Modify”

Target Folder Provide the target folder name

From Folder Provide the from folder name. When we will supply
“/docu/RestTest”, it will get envrefuuid as “RestTest”. If we will
supply “/cons/RestTest”, it will insert or update the record into
MDRDAPI table and also delete the record from MDRDSPC table
as per supplied object name and as “ENTITY” and user.

Install date Supply the date e.g. “30.01.2023”

RFP number Supply the RFP number e.g. 333333

User Supply the username e.g. stuart

App Supply the app name e.g. “REST”

Level Supply the Level number e.g. 300

Project Supply the project name e.g. “RESTAPI”

Task Supply the Task numbere.g. 1

Subtask Supply the SubTask number e.g. 2.

Instance Supply the MDCMS instance name instance name e.g. T84 or
*DFT if using the default MDMCS instance with no suffix.

Location Supply the location name e.g. dev

Object Supply the object name e.g. “mynameapi.json”.

Document environment Supply the Document environment name e.g. “RestTest”.

The MDRPROM is added as a command to the appropriate attribute (as per example attribute OAPI in the previous
section) therefore wildcards can be used. Here is an example:

16.2.5 SDK Console Setup for MDCMS Interface

then “Edit Site” dialogue, select “Object Required” from “MDCMS Values” section of dialogue

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com

‘) MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

IN SDK Console Ul select Console

OAPI Constructor APl Catalogue Qg 9 . STUART Q search

Admin
Select “Edit Site” button
Manage Users Edit Site 2023-01-
select “Object Required” from EoITenT .
“MDCMS Values”
BasePath /www/mdrstt12/
Session Timeout 2
IBMI VALUES
IBMI Base /mdrstt12
Auth Type ® None () Basic
MDCMS VALUES

Object Required Force Object request |

MDCMS Base https://dev.mdcms.ch/mdcmst84
OAPI Attribute OAPI
DOCUMENT VALUES
Document ® Documenter O Confluence
Documenter Base /docu

Debug (On/off)

16.3 Promotion Steps
1. Create the APl in SDK Web Ul

2. Save the OAPI document/specification in SDK

3. Select “Submit Object Request” option in generate tab of SDK web Ul

4. Specify options and submit. Object request will be created for API/Consumer source AND OAPI specification.
5. Promote as necessary and review promoted OAPI Specification in MDRest4i Documenter.

6. To produce the additional documentation, select the Publish button & from Installation details tab in the

MDRest4i Documenter

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 92 /167

17

17.1

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

MDRest4i Function/Variable Reference

This section describes the important function/procedures and variable names defined in the MDRest4i copybooks or
modules. Sometimes these variables are with global scope which means they are declared using “export” keyword in
one module and imported in the other module for inter-module communication.

REST Consumer Handling

Consumer (REST Client) Process Flow

The consumer flow starts with initializing the standard variables followed by the call to “Initialize” procedure from the
actual program where global variables controlling the consumer process flow are set. After receiving the control back
from “Initialize” procedure, the memory is allocated from heap storage. The size of allocated memory is 5MB or the
value in “wg_maxdtalen” whichever is higher.

IFS logging is initiated if “ng_saverestswitch” is set to *On. If the variable “wg_SavelfsType” is set to ‘A’, the file is
opened in append mode (if it already exists). Otherwise, the file is created and logging starts in that file.

The request string is then prepared with the http method, url, port and query string. If the indicator “ng_proxy” is set
*On, the request is prepared for connecting via proxy, otherwise, sending directly to the target. More details on proxy
routing can be seen in “Proxy Connection” section below.

The request string prepared so far is written to the output pointer following which, the standard headers “Accept-

» o«

Encoding”, “Content-Type”, “Content-Length”, “Host”, “Connection” or “Proxy-Connection”, “User-Agent” are written.

If the indicator “ng_authsend” is set to *On, the value available in wg_authString is sent for “Authorization” header,
otherwise the authentication string is generated using “wg_username” and “wg_password” values.

At this step, all the http headers added from the consumer program using “addhttpHeader” function are written in
output string followed by a pair of newline and carriage return which means the end of request and begin of the
payload for the request.

At this point, “BuildRequest” procedure is called, which again gives the control back to the consumer program for
writing the request body using beginObject, endObject, addChar, addDeci etc functions. When the control returns
from “BuildRequest” procedure, the http header “Content-Length” (which was written earlier while writing http
headers) is updated to reflect the actual number of bytes written in “BuildRequest” procedure.

The final request (which contains headers and request body as applicable) is then logged in the IFS file if logging is
requested and it is converted to UTF-8 form for sending the request to the target service. The resolution to the IP
address of the target is then made first by using the value in “wg_serverIP” and then using “wg_hostname”. The rest
of the processing is then handed over to GSKCSEC for the actual network communication by calling either the SSL
connection procedure or non-SSL procedure depending on the type of the request.

When the response is received, if the transfer encoding is chunked, the different chunks are concatenated to create
the complete response string. Likewise, if the response is in gzip form, it is unzipped and then the response is
translated from UTF-8 back to host code. If the received content is “application/pdf” or “application/octet-stream” or
“application/zip” or multipart-form-data”, another procedure is called to receive the attachments.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 93/167

17.2

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

Finally, the procedure JSONSAX is called to perform SAX parsing on the response so that the values can be retrieved in
the main consumer program using JPathN, JPathv etc functions. Complete details about what request has been send
and what response has been received can be seen in the log file.

Consumer Functions
17.2.1.1 AddhttpHeader

This procedure can be used to instruct the consumer to write the custom HTTP header while sending the request to
the target.

Arguments
e Header Name 100
e Header Value 8192
Returns

e Indicator (returns *on for success and *Off for failure)

17.2.2 BuildRequest

This procedure should contain the statements writing the request body for POST, PUT, DELETE, PATCH http service
requests. The writing happens via “w” procedure. It doesn’t have any parameters.

17.2.3 CloseDown

Write any file closure, memory/resource clean-up instructions in this procedure. It doesn’t have any parameters.

17.2.4 FixReprocess

This procedure gets the control after the request has been sent and response received. The received data is available
in “wg_rspdta” (size 5242880 bytes). You can scan the data and if anything is found to be wrong (e.g. authentication
problems) and you would like to reprocess the request by changing one or the other variables which were in
“Initialize” procedure, change them and set the variable WG_NEXTSTEP(10i,0) to 100. This will cause the same request
to be processed again over the pre-existing socket/SSL connection without any delay in establishing the connection. It
doesn’t have any parameters.

17.2.5 GetAttachments

This procedure can be called to receive the file names, length of the received file and the number of files received in
last parameter. This can be called after GskConsume() procedure call. The purpose would be to check the file names
and then use WritelfsFile function to write the required file at required path (based on file name or file extension).

Arguments
e File_name 200A dim(20)
e File_Length 10i 0 dim(20)
e NumOfFiles 10i,0

Returns

N/A

17.2.6 GetBody

This procedure can be called with variable declared of 5MB size (i.e. 5242880) to receive Only the JSON Part of the
response. If you want to use this procedure, set the indicator "ng_cleanup" to *Off before call to GskConsume

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 94 /167

MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

procedure in mainline section. Please make sure to call “MemCleanup” procedure before the program exits to cleanup
the allocated memory.

Arguments
e Response_body 5242880A

Returns

N/A

Example

ng cleanup = *off

(w rspbody) ;

Memcleanup () ;

17.2.7 GetErrorWarnings

This procedure can be called after the “GskConsume” procedure returns the control back to the program. This
procedure returns an array qualified data structure with 99 elements. The first subfield of this data structure is
message and second is type. In the second field, it will return W or E, where W means warning message and E means
error message. If no errors or warnings were encountered while processing the request from the REST service, it will
be empty.
Arguments

e ErrWarning ds qualified dim(99)

e message 100

e type 1

Returns

N/A

17.2.8 GetHdr

This procedure can be used to retrieve the value of http headers received in REST service response. The header name
can be supplied in first parameter and it will return the corresponding value in the second parameter. If the header is
not found, “*notFound” will be returned.

Arguments
e Header Name 100

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 95/167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

e Header Value 2048

17.2.9 GetAllHdr

This procedure can be used to return all the headers received in response by the REST service.

Arguments
e Header_name 100A dim(99)
e Header_value 2048a dim(99)
Returns
N/A

17.2.10 GetReqBody

This procedure can be called from within BuildRequest procedure after complete request body is written. The purpose
would be to get the complete content of the request body and maybe encrypt before sending. The parameter of 5MB
size (i.e. 5242880) must be supplied to receive the content.

Arguments
e Request_body 5242880A

Returns

N/A

17.2.11 Initialize

This procedure contains the initialization of global variables (e.g. wg_servicepath, wg_PortNumber,
wg_hostname/wg_serverlP, wg_httpsmeth, wg_urlparm etc.) which are used in GskConsume module for the REST
service request. It doesn’t have any parameters.

We can also load (e.g. wg_servicepath, wg_PortNumber, wg_hostname/wg_serverlP, wg_httpsmeth, wg_urlparm
etc.) through the MRCNSDTLF file. For this we need to add “/copy grpglesrc,mrsetcon” copy book

End of the Initialize procedure. This copy book will read MRCNSDTLF file as per key pgmname and load all variable’s
values of this procedure. And add MRCNSDTLF file in the F spec of the consumer program. For more details, please see
user tutorial section 4.3.3.

17.2.12 LoadRspHdrToDB

This function can be used to process all the http headers/values (which are received as part of the response to the
called REST service) and write them in MDRJSONF file. This function would generally be used after the call to
GskConsume procedure has returned the control back in consumer program. The first parameter is the header name.
You should ideally supply “*ALL” which means write all the headers. The second parameter is the entry type under
which you want to write the http headers in DB file. The third parameter is optional and if not specified, the header
and its value will be written to the DB file in library list. Below is the example.

Arguments
e Header Name 100a
e Entry Type 3a
e DBF Library 10a

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 96 /167

MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

Returns

N/A

InitVariant();
tg InitializePointer = %paddr(Initialize);
tg BuildRegPointer = %paddr (BuildRequest);
tg ClosedownPointer = S%paddr(Closedown) ;
GskConsume () ;

LoadReqHdrToDB ('OHD' : '"MDRDEMOD ') ;
if wg_httpStatus = '200';

// Change above condition to appropriate success status codes as
// applicable to your REST service and add the processing logic here

// You may also call "GetErrorWarnings" procedure with one parameter
// of 1024a attribute to get any errors/warnings reported in execution

Endif;

17.2.13 LoadReqHdrFromDB

This function can be used to read all the headers and their values from MDRJSONF file and write them as part of the
request body while sending the request to the REST service. The first parameter is the entry type under which you
have headers written in DB file and you want to read them. The second parameter is the library name where
MDRJSONF file exists and it is optional. If not specified, the header and its value will be read from the DB file in library
list. Please refer the example provided in the next point below.

Arguments
1. EntryType 3a
2. DBF Library 10a
Returns
N/A

17.2.14 LoadQryParmFromDB

This function can be used to read all the query parameters available in MDRJSONF file and write them to the
“wg_urlparm” variable under Initialize procedure. The parameter “DBF Library” can be supplied to read the
MDRIJSONF file from there. If not specified, it will read the file from the library list. Below is the example

Arguments
e DBF Library 10a

Returns

N/A

p Initialize b export
d Initialize pi
/Free

// Set Import Values
wg_contentType = 'application/json; charset=UTF-8';
wg_httpsMethod = 'GET';

wg maxAttempt = 25;

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 97/ 167

‘) MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

wg_mSecDelay = 500000;

wg _hostName = 'dev.mdcms.ch';

wg_ serverIP= ' ';

wg_portNumber = 2525;

wg_servicePath = '/mdrdemod/HDRPARMFP';

wg_urlParm = LoadqryParmFromDB ('MDRDEMOD') ;

// Set below indicator to *Off if you don't want to save logs in IFS
ng saveRestSwitch = *On;

wg saveRESTpath ='/MDREST4i/HDRPARMFPC.json';

// Add headers from MDRJSONF
LoadReqgHdrFromDB ('IHD': 'MDRDEMOD') ;

// The setting "ng ssl=*On" enables SSL request. Otherwise, it's non SSL
ng_ssl = *Qff;

17.2.15 MemCleanup

This procedure can be called to run memory cleanup of the heap memory allocated in consumer module. This gets
called automatically when GskConsumer procedure ends but if you have set “ng_cleanup” to *Off before the call to
“GskConsume” in mainline section of the consumer program, you must call this procedure to return the heap storage
back to the OS.

Arguments
N/A

Returns

N/A

17.2.16 SetReqBody

This procedure can be called from within BuildRequest procedure after complete request body is written usually when
request body has been fetched using GetReqBody and encrypted. This procedure helps to replace the existing request
body to this content. The first parameter of 5MB size (i.e. 5242880) should have the content to be written and the
second parameter should have the length of data to be written from the first parameter to the target request body.

Arguments
e Request_body 5242880A
e Length 10i,0
Returns
N/A

17.2.17 WritelFSFile

This procedure can be used to write the received attachments at specified path. The path should contain folder names
and not the file name. If you want to use this procedure, set the indicator "ng_cleanup" to *Off before call to
GskConsume procedure in mainline section to instruct avoid running cleanup after consumer call returns.

Arguments

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 98 /167

17.3

17.4

‘ MIDRANGE DYNAMICS

providing innovative IBM i solutions M DCMS
e File_name 200A
e |IFS_Path 1024a
Returns
N/A

Build Request and Process Response via DB file

When the consumer has to supply the request body in JSON format and the JSON content is available in “MDRJSONF”
file, you can use “JsonFromDB” procedure to build the request body from DB file. Similarly, if the consumer has
received JSON response and you want to load that response in DB file, the same can be achieved via call to
“JsonToDB” procedure. Please refer “Automated parsing and writing of JSON using DB File” section in this document
for more details.

Useful Consumer Variables

Global Pointer Variables

tg buildReqPointer

This pointer is required to hold the address of “BuildRequest” procedure in main program.

tg closedownPointer

This pointer is required to hold the address of “Closedown” procedure in main program.

tg_initializePointer

This pointer is required to hold the address of “Initialize” procedure in main program.

tg_dtaptr

If for some reason, you want to receive the complete response (header as well as details), declare a variable of 5MB in
the main program and assign the address of that variable to "tg_dtaptr" pointer. When the procedure “GskConsume”
returns the control back to the main procedure, the variable will have the response data stored.

Global Work Variables

wg_servicePath

In the Initialize procedure of the program which is using GskConsume for consumer service, this variable should be
assigned the url path of the REST service e.g.

wg_servicePath = 'http://mddev.mdcms.ch:2513/skdemo/clt det';

wg_urlParm

If the http request contains the query parameters, this variable is assigned the parameter names and values e.g.
below:

wg urlparm = 'client=2&policy=14&claim=10";

wg httpsMethod

This variable should be set to the http method for the service request being made.

wg _httpsMethod = 'GET';

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 99/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

wg_ portNumber

This variable should be set to the port number where the REST service is available. When the port is not specified in
the URL, still this variable should be set to the default http port number 80 for non-SSL and 443 for SSL.

wg_PortNumber = 4523;

wg HostName:

If the URL contains host name, that should be assigned in this variable for mapping the IP address via DNS e.g.

wg_HostName = mddev.mdcms.ch';

wg_serverlP

If the URL contains IP address instead of the host name, in that case, wg_urlhost should be set to blank and
wg_serverlP should be assigned the IP address of the host.

Wg_serverIP = ‘41.169.58.2327;

wg_urlParm

If the target REST service expects some parameters, set this variable to the parameter/values.

Wg urlParm = ‘clientid=2&policy=5';

wg ContentType

This variable should be set to the type of content being supplied as part of http request.

wg urlContent = 'text/html; charset=UTF-8';

wg saveRESTPath

This variable contains the qualified IFS file name where REST service request and response should be logged. The
logging will happen only if the indicator variable ng_saveRESTSwitch is set *on.

wg_saveRESTPath = ‘/MDREST4i/logs/TESTGEN '+ %char (%timestamp()) + '.txt';

wg_savelFSType

This variable can be set to “A” (append) if you want the logging of the outgoing request and incoming response should
happen in the same IFS file.

wg_maxAttempt

This variable is initialized to 5 which means the consumer will make five attempts to read the response. It can be
imported in the consumer program and the value changed as per the requirement in the Initialize procedure.

wg_MsecDelay

This variable is for delaying the job by specified “micro seconds” before trying for the next attempt if the response is
not received. The variable is initialized to 50000 (i.e. 0.05 second). This variable can be overridden in the consumer
program and value changed as required.

wg_dcmApplication

This variable is used to set the name of DCM application in digital certificate manager. It's only used in SSL consumer.
You should have one DCM application in digital certificate manager (it’s not necessary for that application to have
some certificates attached). Assign the application name to this variable in “Initialize” procedure of the consumer.

wg_ userAgent

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 100/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

Use this value to override the list of SSL

wg_authString

If the REST service being called requires authorization other than what you can provide through user ID and password,
you can send the specific auth string instead of sending the basic authentication with user ID and pwd. In this case,
assign the authentication string to this variable. E.g. wg_authstring = ‘Bearer <token name>’;

wg userName/wg password

If the REST service requires basic authentication via user ID and password, you can set the values in these variables.
This would then be converted to UTF-8 followed by base64 and sent as the authorization string.

Wg spcerror

In some specific case, if the REST service used in consumer sends the 200/0K status but a specific message in response
should be considered as an error, you can assign that error text in this variable, the special HTTP status code 801 will
be returned and you can monitor the variable “wg_httpstatus” in your program.

wg_httpStatus

This variable holds the http status code (e.g. 200) received from the REST service. This can be used in consumer
program to check the success/failure codes as applicable to your REST service.

wg Reason

This variable holds the reason (e.g. OK) received from the REST service. This can be used in consumer program to
check the success/failure codes as applicable to your REST service.

wg_maxdtalen

This variable is available for specifying the anticipated response length in consumer. By default 5MB (i.e. 5242880)
bytes is taken (if not set already). If you specify length is more than 16MB (i.e. max allowed for a user space size), the
statement "h alloc(*teraspace)" should be added to the consumer program. e.g. below statement sets the max data
length in consumer program (before call to GskConsume procedure in mainline section) to 10MB (approx.).

wg maxdtalen = 10000000;

wg_proxyhost

This variable should be set to the proxy host name (if the host name is not in IP address format) for calling the REST
service via proxy.

wg_proxylP

This variable should be set to the IP address of the proxy server for executing the REST service via proxy.

wg_proxyport

This variable should contain the port number of the proxy server when the REST service is being routed via proxy.

wg proxvusr/wg proxypwd

When the REST service is being run from the consumer via proxy and the proxy requires, authentication, these
variables should be set to the user ID and pwd for basic authentication.

wg maxredirect

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 101/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

When your REST service is expected to return the “redirect” type response (i.e. with the response code between 300
and 399 and the http header containing the “LOCATION” set to another URL where request should be redirected, you
need to set the variable “wg_maxredirect” with the number of maximum possible redirections internally. For example,
if the first level call returns the target URL, the variable should be set to 1 and if the first level call could return the URL
which in turn provides the target URL, the variable should be set to 2 and so on.

wg_utf8reqbody/wg utf8response

By default the consumer translates the UTF8 response to normal text and then does JSON parsing. Likewise, you use
beginObject, addChar etc functions to create the request body. However, if you instead want to manage this in UTF8
form (e.g. the request body is coming from some DB file and the response is supposed to be written in DB file and
both in UTF8 format), set the indicator “ng_utf8conv” to *off and in that case you have to load the request body in
w_utf8reqbody variable in “BuildRequest” procedure. Likewise, you can get the UTF8 response in “w_utf8response”
variable.

17.4.1 Consumer Timing Variables

These variables should be used after GSKCONSUME() function is called in consumer.

wg_fullreq

This variable tells the time taken in micro-seconds to process full consumer request. This includes all preparation and
initialisation time

wg_ reqPrep

This variable contains the time taken to build request after GSKCONSUME() is called but before start of making the
actual request. Includes creation and conversion of the HTTP message including headers and requestBody prep

wg_reqRsp

Time taken to establish connection up until complete response is received. No conversion or data preparation occurs
during this time: it’s the pure request/response time

wg preSSL

This variable tells the pre-processing time in micro-seconds before any network communications are established for
sending the request and receiving the response.

wg_jsonprc

This variable tells the time taken in JSON parsing of the received response.

wg_dtacvt

This variable tells the time taken in data translation (utf-8 to host code and gzip translation if applicable) after
receiving the response.

17.4.2 Global Indicators

ng_customlog

If you want to enable logging the errors and warnings, set this indicator variable to *On. The logging happens in
LXRCLTLOG file under MDRST library via call to procedure wlogclt internally.

ng saveRESTSwitch

If you want to log the service request in the IFS directory at the qualified file name available in wg_saveRESTPath, set
this indicator to *On.

ng_ ExitOnFirstResponse

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 102 / 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

This indicator is initialized to *On and the purpose is to exit out of the loop once the response is received instead of
iterating further. You can set it to *Off if the response is expected to be large and coming in multiple chunks.

ng LogErrSRCM

This indicator is initialized to *On and the purpose is to log all the exceptions encountered in consumer processing.
You can set it to *Off if you would like to disable the default exception handling to write the logs.
ng_authsend

This indicator is set *On by default and is used in SSL regest. If you don’t want to send the authorization in the specific
consumer program, set the value to *Off before calling GskConsume procedure. When this indicator is set *On, the
logic checks the value in wg_authstring and if it’s not blank, this value is sent, otherwise, the value from wg_userName
and wg_password is used to sent as “Basic” authentication type.

ng_ssl
This indicator is used to decide whether the consumer is of SSL or non-SSL. If you want to use SSL request, set this
indicator to *On, else *Off (which is the default).

ng_autowrite

This variable is set to *On by default and that means the IFS files received as attachments from the REST service will
be written at the IFS path set in data area DFTUPLOADP. If the data area is not found, the files are downloaded in
/MDRest4i/upload.

ng_cleanup
This variable is set to *On by default and that means the user spaces created to send/receive the data or intermediate

language translation are deleted and any pointer memory allocated dynamically from the heap is also deallocated.

n rox

This variable is for enabling the http proxy if the REST services you want to access have to be channelized via proxy.
This indicator is initialized to *Off by default. You can set it to *On to enable sending the request via proxy which will
use the information from the variables “wg_proxyhost”, “wg_proxylp”, “wg_proxyport”, “wg_proxyusr” and

“wg_proxypwd”.

ng_proxyssl

When the proxy is used to access the target REST service, this variable can be set to *On to enable communication to
proxy over SSL channel and establish the connection with the target. This indicator is initialized to *Off by default.

n arse

This variable is set to *On by default and that means the JSON/XML parsing will be done by default after the response
is received in the consumer. You can import this indicator in the consumer program and set it to *off to disable the
parsing. You may later use GetBody procedure to receive the JSON or XML response.

ng_tracktime

This variable is set to *Off by default and the developer can set it to *On if there is some performance issue to check
what time is being consumed by the different internal processing sections.

ng UTF8Conv

This variable is set *On by default and that means the UTF8 to ASCII conversion will be performed on the response
received from the REST service and likewise, the writing of the request body is being done using standard beginObject,
addChar etc functions. However, in exceptional case when there is a need to directly accept UTF8 state of the REST
service response, set this indicator to *Off in the “Initialize” procedure and you can access the response in

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 103/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

“w_utf8response” variable. When this indicator is *Off, you have to send the request body in UTF8 format which is
expected to be assigned in the variable “w_utf8reqbody”.

ng_oldmethod

This variable is set *Off by default and that means the the writing of the request body is being done using standard
beginObject, addChar etc functions. However, if you want to do it via old “w” function of MDRest4i, set this indicator
to *On in “Initialize” procedure but then only data written by “w” function will be accepted and anything used via
addChar, beginObject etc will be ignored.

ng_bypasscert

This variable is used when REST service is running in SSL mode and it is set *Off by default. You can set it to *On if you
want to bypass certificate validity checking.

ng_logevents

This variable is used to log the detailed http actions/events which are being performed from the consumer to send the
request and receive the response.

ng_logfile
This variable can be set *On if you want to log the http events in MDRLOGS database file.

ng_decodeutf

If you are expecting the Unicode constants (e.g. \u0034) in the response, set this indicator to *On to convert them to
normal text.

ng_largefiles

By default, the maximum data size allocation is 5 MB. However, if you expect the attachments to be received and
larger than 5MB, set this indicator to *On and it will then allocate 16MB size. If you expect to allocate any other size
higher than 5MB, set the allocation size in “wg_maxdtalen” variable.

17.5 Controlling Authentication in Consumers

The standard headers used for authentication are added setting specific variable combinations in the “Initialize”
procedure of the consumer. The table below describes these Authentication type:

Auth type Request header requirement/result Parameters to set

‘Basic’ This algorithm Base64 Encodes the concatenated wg_userName / wg_password
wg_userName and wg_password values, and adds the
result to “Basic” + space as the value for the Header
field “Authorization” resulting in:

Authorization: Basic c3R10nBhc3M

“Bearer’ This algorithm concatenates “Bearer” + space to the wg_authString
value of wg_authString as the value of the
“Authorization” header field resulting in:
Authorization: Bearer
ACd9d5e30cfeeff79ad8b25c046a69c95a

Standard token (bearer) “Authorization: token”

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 104 / 167

17.6

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

You need to set “ng_authsend” to *On and then either set the value in “wg_authString” for non-basic type
authentication, or keep “wg_authString” to blank as default and set the values in “wg_userName” and
“wg_password”. The consumer module will take care of sending the authorization based on these variables.

Proxy Handling

When the indicator “ng_proxy” is set as *On, the connection to the target REST service is made via proxy. The socket
is then opened after resolving the IP address first using “wg_proxylP” and then by using “wg_proxyhost”. If the target
is non-SSL, the connection is made to the proxy and complete URL including the host name, port, endpoint and query
parameters (e.g. http://mddev.mdcms.ch:2515/skdemo/getclient?id=4) is sent. However, if the target is SSL, the
request is sent to proxy using http “CONNECT” method. Proxy then establishes the connection and sends http status
200 with the response as “Connection Established”. At that point, the socket connection is upgraded to use various
SSL parameters and the request is sent to the target over this upgraded SSL channel.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 105/ 167

http://mddev.mdcms.ch:2515/skdemo/getclient?id=4

18

18.1

18.2

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

REST Producer (API) Handling

Producer Process Flow

The REST service program is composed of some custom logic written within the program itself and fixed processing
section coming from the copybooks. The processing starts with the logic in LXRRESTC copybook. The variable
definitions are in MDRESTDFN copybook. The main program is expected to have z_CustomlInit subroutine to initialize
some variables (e.g. expected memory allocation size, IFS logging indicator and IFS file name). Depending on the
service types, the main program is expected to have subroutines (e.g. z_ProcGet, z_ProcPut, z_ProcPost, z_ProcDel,
z_ProcPatch). If the REST service is expected to have some query parameters, the main program will also have
z_CheckParms, z_SetParms and z_SetMethod subroutines.

The subroutine z_Customlnit is executed in the beginning and is the first control to the developer so that he can write
this subroutine in main program and for necessary variable/memory initialization. Usually the variables
“w_maxrsplen” and “w_maxrsplen” are set with the expected request and response size. The indicator
“n_savelFSSwitch” can be set for logging the request in an IFS file. The internal procedure is then called to extract the
method type and query parameters.

The logging is then started if the indicator “n_savelFSSwitch” is set to *On. If the variable “w_savelFSPath” is non-
blank, the logging happens in this file, otherwise, the IFS file name is built using the MDRest4i instance installed (e.g.
/MDRest4i/logs/LXRLOGS_2019-07-31.10.34.25.300000.txt).

Based on the method type (e.g. GET, POST), the respective subroutine is called.

The expected names of the query parameter are set in z_SetParms subroutine and then their value is assigned using
z_EvalParms subroutine. If any of the mandatory parameter is not supplied, the subroutine z_SetMethod is called to
send the parameter error. When the request is of type “GET”, the page handling is done to check and process
next/previous page (refer MDRest4i Paging implementation section for more details).

In request types “PUT”, “POST”, “PATCH”, the request body is processed by first getting the Content-Type and
Content-Length. When the indicator “n_getregsize” is set *On, instead of loading the body, just the payload size is
sent to show the request body size. Otherwise, if the value of “w_maxreqglen” is greater than 5MB (i.e. 5242880), the
memory is allocated from heap but when its less than 5MB, the user space of size 5MB is created in QTEMP library
and the actual payload from the request body is loaded and translated to UTF-8.

If the attachments are received in the request body (i.e. content type is “application/pdf” or “multipart/form-data”),
the files are downloaded at the default upload path if the indicator “n_autowrite” is set *On. Otherwise, you can later
download the IFS files at non default location using the procedure “WritelFSFile”. Refer Downloading Attachments in
REST service for more details. The JSON content received in the request body is supplied to JSONSAX to perform SAX
parsing.

After that, the control is given to specific subroutines z_ProcGet, z_ProcPost etc. where you can use JPathv, JPathN etc
functions to extract the specific values from JSON body and use beginObject, endObject, addChar etc functions (refer
JSON section for more details about these functions). These functions write the response at the internal pointer and
not directly to the output.

Once complete response is written, it is sent to the requester followed by the call to z_CustomExit subroutine
execution. This is last control to the program so that you can define this subroutine in your program and run some
post processing memory cleanup or anything before REST service exits.

MDRest4i Producer Switches

These are the conditional compiler directives guiding the compiler whether to include the relevant source section or
not (depending on which subroutine or procedure the user wants to override for changing the default behavior). The
REST services generated using the MDRest4i product makes use of the standard copybooks MDRESTDFN, LXRRESTC
and LXRRESTP. The copybook LXRRESTC contains the mainline part of the program and the subroutines and LXRRESTP
contains the procedures used either by the subroutines in LXRRESTC or other procedures in LXRRESTP. Most of the
subroutines in LXRRESTC and the procedures LXRRESTP are conditioned by a specific conditional compiler directive. In
certain cases, the developer may like to make some alterations in the processing logic of these subroutines and/or

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 106 / 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

procedures. In order to do that, the developer can define the appropriate switch using the “/Define” compiler
directive before “/copy” statement of the relevant source member. This is to tell the compiler not to include that part
of source code section conditioned by “/If Not defined” directive.

18.2.1 LXR_CheckParms
Source Type: Copy Book

Source Member: LXRRESTC
Source File: QRPGLESRC

Description: This switch causes the inclusion or exclusion of the empty copy of the subroutine “z_checkParms”
defined in LXRRESTC. If you are expecting the parameters in the REST service program, Add “/Define LXR_setParms’
directive before the “copy” clause for including LXRRESTC member and write “z_setParms” subroutine with the
necessary processing to validate the parameter values received in query parameter string.

J

18.2.2 LXR_Custominit

Source Type: Copy Book
Source Member: LXRRESTC

Source File: QRPGLESRC

Description: This switch causes the inclusion or exclusion of the empty copy of the subroutine “z_CustomInit”
defined in LXRRESTC. If you want to initialize some variables (e.g. setting the indicator “n_saveRestSwitch”, setting the
logging file name in “w_savelFSPath”, setting “w_maxreqlen” and “w_maxrsplen” variables with the expected
memory size for the request body and response output) or would like to have some pre-processing before any
method gets processed, Add “/Define LXR_Customlnit” directive before the “copy” clause for including LXRRESTC
member and write “z_CustomlInit” subroutine with the necessary processing.

18.2.3 LXR_CustomExit

Source Type: Copy Book
Source Member: LXRRESTC

Source File: QRPGLESRC

”

Description: This switch causes the inclusion or exclusion of the empty copy of the subroutine “z_CustomExit
defined in LXRRESTC. If you want to deallocate some memory or close some explicityly opened files, Add “/Define
LXR_CustomExit” directive before the “copy” clause for including LXRRESTC member and write “z_CustomExit”
subroutine with the necessary processing.

18.2.4 LXR_LogService
Source Type: Copy Book

Source Member: LXRRESTP
Source File: QRPGLESRC

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 107/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

Description: Include procedure wlogSRV for standard service logging. If you want to customize this procedure, add
“/Define LXR_setParms” directive before the “copy” clause for including LXRRESTP member and define “wlogsrv”
procedure with the necessary processing.

Arguments:
1. | p_writeText Text Contains the text to write to the log 50a
2. | p_msglLvl Message The severity of the message 10i 0
Level
Example

/define LXR LogService

/copy LXRRESTP

/undefine LXR LogService

18.2.5 LXR_ProcGet

Source Type: Copy Book
Source Member: LXRRESTC

Source File: QRPGLESRC

Description: This switch causes the inclusion or exclusion of the empty copy of the subroutine “z_ProcGet”
defined in LXRRESTC. If you are writing the REST service program for “get” method, Add “/Define LXR_setParms”
directive before the “copy” clause for including LXRRESTC member and write “z_setParms” subroutine with the
necessary processing.

18.2.6 LXR_ProcPut

Source Type: Copy Book
Source Member: LXRRESTC

Source File: QRPGLESRC

Description: This switch causes the inclusion or exclusion of the empty copy of the subroutine “z_ProcPut”
defined in LXRRESTC. If you are writing the REST service program for “put” method, Add “/Define LXR_setParms”
directive before the “copy” clause for including LXRRESTC member and write “z_ProcPut” subroutine with the
necessary processing.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 108 / 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

18.2.7 LXR_ProcPost

Source Type: Copy Book
Source Member: LXRRESTC

Source File: QRPGLESRC

Description: This switch causes the inclusion or exclusion of the empty copy of the subroutine “z_ProcPost”
defined in LXRRESTC. If you are writing the REST service program for “post” method, Add “/Define LXR_ProcPost”
directive before the “copy” clause for including LXRRESTC member and write “z_ProcPost” subroutine with the
necessary processing.

18.2.8 LXR_ProcPatch

Source Type: Copy Book
Source Member: LXRRESTC

Source File: QRPGLESRC

Description: This switch causes the inclusion or exclusion of the empty copy of the subroutine “z_ProcPatch”
defined in LXRRESTC. If you are writing the REST service program for “patch” method, Add “/Define LXR_ProcPatch”
directive before the “copy” clause for including LXRRESTC member and write “z_ProcPatch” subroutine with the
necessary processing.

18.2.9 LXR_ProcDel

Source Type: Copy Book
Source Member: LXRRESTC

Source File: QRPGLESRC

|ll

Description: This switch causes the inclusion or exclusion of the empty copy of the subroutine “z_ProcDe
defined in LXRRESTC. If you are writing the REST service program for “delete” method, Add “/Define LXR_ProcDel”
directive before the “copy” clause for including LXRRESTC member and write “z_ProcDel” subroutine with the
necessary processing.

18.2.10 LXR_SetMethod

Source Type: Copy Book
Source Member: LXRRESTC

Source File: QRPGLESRC

Description: This switch causes the inclusion or exclusion of the “z_setmethod” subroutine defined in LXRRESTC.
When the REST API program expects the parameters and any of the mandatory parameter is not supplied, this
subroutine is executed to report an error mentioning the mandatory and optional parameter names. If you want to

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 109/ 167

18.3

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

customize this subroutine, Add “/Define LXR_SetMethod” directive before the “copy” clause for including LXRRESTC
member and write “z_SetMethod” subroutine with the necessary processing.

18.2.11 LXR_setParms

Source Type: Copy Book
Source Member: LXRRESTC

Source File: QRPGLESRC

Description: This switch causes the inclusion or exclusion of the empty copy of the subroutine “z_setParms”
defined in LXRRESTC. If you are expecting the parameters in the REST service program, Add “/Define LXR_setParms”
directive before the “copy” clause for including LXRRESTC member and define “z_setParms” subroutine with the
necessary setting of the parameter names and mandatory/optional flags.

18.2.12 LXR_SendSchema

Source Type: Copy Book
Source Member: LXRRESTC

Source File: QRPGLESRC

Description: This switch causes the inclusion or exclusion of the “z_sendschema” subroutine defined in
LXRRESTC. This subroutine is used for sending the expected schema when the REST service expects some payload as
part of the request body but the payload is not received. Then, based on the value in “w_schemapath” variable, either
subroutine “z_sendSchemaManual” is executed (when the variable “w_schemapath” is blank) or the schema from the
IFS file is sent (when “w_schemapath” contains the valid IFS file). If you want to customize this subroutine, Add
“/Define LXR_PreReturn” directive before the “copy” clause for including LXRRESTC member and write “z_PreReturn”
subroutine with the necessary processing.

18.2.13 LXR_SendSchemaManual
Source Type: Copy Book
Source Member: LXRRESTC

Source File: QRPGLESRC

Description: This switch causes the inclusion or exclusion of the “z_sendschemaManual” subroutine defined in
LXRRESTC. This subroutine is called from z_sendschema subroutine when the variable w_schemapath is blank or when
the read to the schema file on IFS fails. You may like to customize this subroutine to have the specific fields, add
“/Define LXR_SendSchemaManual” directive before the “copy” clause for including LXRRESTC member and write
“z_sendschemaManual” subroutine with the necessary processing.

Important /Customizable subroutines in Producer Processing

z_SavelFS — This subroutine contains the logic to fetch various environment variables for the http request. create the
user space LXRREST in QTEMP library. Whenever the procedure “w” is used to write the response on standard output,

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 110/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

the data is stored at the pointer t_sendpointer pointing to this user space. This data is later written to standard output
using CgiStandardWritel procedure call.

18.4 Producer Functions

18.4.1 AddAttachment()

This procedure can be used to send the attachments in the response to the REST service. As many attachments can be
sent as required making sure the maximum response size doesn’t exceed allowed for the REST service. The files with
the extension jar, war, zip, pdf and json are supported. When there are more than one types of the files, the content
type is set to “Content-Type: multipart/mixed; boundary=MDREST4I”. With each file type, the “Content-Type” is set
for that type. The name of the file is given in two headers “name” and “filename”. With each next file, the boundary ‘-
-MDREST4/I’ is added after the exact end of the previous file content. At the end, ‘--MDREST4I--' is written and that
means the end of the response.

Copy Book member: LXRRESTP

Arguments
File Path 1024a

Returns

N/A
Example:

addAttachment (' /home/stuart/afftest-invoice-clickwarp.pdf') ;
addAttachment (' /home/stuart/Synon.pdf') ;

18.4.2 AddHdr()

This procedure can be used to add the customer headers in REST http response.

Copy Book member: LXRRESTP

Arguments

e Header Name 100
e Header Value 2048

Returns

None

Example:

You can call the header field anything you like. In the example below s_sdsPgmNam comes from copybook
MDRST/QRPGLESRC.LXRSRC which by default is copied into every program. Other values that can be used from there
include s_sdsPgmlLib, s_sdsJobNam, s_sdsJobNbr etc

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 111/ 167

‘) MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

Gives this header in the response:

LXRPENDKEY:
MDR_STUFF: HELLOWORLD-MDRDEMOD-MDRDEMOD-592445
Server: Apache

Transfer-Encoding: chunked

Where MDRDEMOD is the HTTPSERVER instance and SERVER CGl job and the lib where the program is, and
HELLOWORLD is the name of the program

18.4.3 CrtUsrSpc()

This procedure creates the requested user space in QTEMP library and returns the pointer to user space. If the user
space already exists, it won’t be created and the pointer will be returned. In this procedure available three
parameters where as two parameters is mandatory and third last parameter is optional for user space length. If we
will use this procedure with three parameter it will create user space as supplied length in third parameter and If we
will use this procedure with two parameters, it will create 5 MB user space.

Copy Book member: LXRRESTP

Arguments

1. User Space name 10a
2. User Space pointer *

3. User Space size 10i 0 options(*nopass)

Returns

N/A

18.4.4 extractQryPrms

This function can be called from the REST service to extract all query parameters and their values as received in the
REST service. The parameters and their values are updated in d_Qparm data structure which is defined in the
copybook MDRESTDFN as below.

d d Qparm DS qualified dim(50)
d s_Name inz (*blanks) like(w_parm)
d s_Value inz (*blanks) like(w_parmval)

You can therefore directly use the data structure after the function call to extract any query parameter:

extrctQryPrms () ;
for w_idxl = 1 to %elem(d _gparm);
if d gparm(w_idxl).s name = ‘MYHEADER';
w_hdrvalue = d gparm(w_idxl) .s_value;
leave;

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 112 / 167

‘ MIDRANGE DYNAMICS

providing innovative IBM i solutions MDCMS
endif;
endfor;
Arguments
N/A
Returns
N/A

18.4.5 GetAuth()

This procedure can be used to return the authorization information in the REST service. The procedure has three
parameters where first is the input parameter and remaining two are output parameters.

If the first parameter (i.e. authorization type) is supplied as 'BASIC', it will return the user name and password in
second and third parameter respectively. If the authorization type is 'BEARER’, it returns the token in the second
parameter and third parameter will be blank.

In order to use this function in any rest service, make sure to have below configuration in your http server so that the
Apache server sends the authorization info to the program.

SetEnvif Authorization "(.*)" HTTP_AUTHORIZATION=S1

Copy Book member: LXRRESTP
Arguments
1. Auth Type 10a
2. User Name 1024a
3. Password 1024a
Returns
N/A
Example

18.4.6 GetHdr()

This procedure can be used to retrieve the value of custom headers received in REST http request. The second
parameter returns the value of custom header supplied in the first parameter.

Copy Book member: LXRRESTP

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 113/ 167

‘) MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

Arguments

e Header Name 100
e Header Value 2048

Returns

None

Example:

The code below reads the value from header called MDRTEST added by the client to the HTTP request, adds some text
to it and writes it back to the client using the AddHdr function described above.

Using POSTMAN a header MDRTEST was added to a GET request to the MDRESTA4i API:

GET v https://mddev.mdcms.ch/skdemao/TSTGETHDR
Params Authorization @ Headers (&) Body Pre-request Script Tests Settings
Headers
KEY VALUE
— MDRTEST MDRTEST-value

Here is the response received in POSTMAN from the above MDREST4i API code:

Body Cookies Headers (12) Test Results tatus: 200 OK 2320 78R
KEY VALUE
Date Fri, 24 Apr 2020 15:59:31 GMT
Server Apache

LXRPEGNKEY
LXRPENDKEY
LXRPAGETYP
LXRNBRRCD

MDRTEST MDRTEST-value_response

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 114/ 167

‘) MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

18.4.7 GetPathParm

This function can be called from the REST service to extract the value of specific path parameter as expected in the
REST service. This functions expects the fixed entry name as the first parameter and offset as the second parameter.
The offset value could be negative or positive depending on the path parameter location from that fixed entry.

Arguments
Fixed Name 100a
Offset 5i,0

Returns

Parameter Value 2048a

Example

"version": "1.6.6"

Y
"paths": ({)
"/mybikes/{bikeno}/listbikes": {
"get": {
"operationId": "listbikes",

In this case, the path parameter “bikeno” is one position right to the fixed entry “mybikes”. Therefore, if we are using
“mybikes” as the first parameter, the second parameter will be 1 whereas if we use “listbikes” as the first parameter
to this (i.e. GetPathParm function), the second parameter will have to be supplied as -1. As you can see, return value is
assigned to w_str2. This value is then assigned to the variable expected to hold the parameter value and is used in
later processing as needed.

0100.40 // =

0100.50 // Set Path Parameters

0100.60 // =

0100.70 Begsr z_GetPathParm;

0101.70

0101.80 w_str2 = GetPathParm('mybikes':1);
0101.90 if w_str2 <> '*notFound';

0102.00 n bikeno = *On;

0102.10 p_bikeno = %trim(%trim(w_str2));
0102.20 Endif;

0102.30 Endsr;

18.4.8 GetReqBody

This function can be used to REST APIs for getting request body in a variable or write in the IFS file. This function have
three parameters one is mandatory and other two parameters are optional. If we want to get JSON request in a
variable, we need to use this with one parameter of 5 MB size (i.e. 5242880) and if we want to write the request body
in the IFS file, we need to use this with three parameter where firstis 5 MB string second in type where we need to
supply it with the type ‘IFS’ and third last parameter we need to supply full path name with the file name where we
want write the JSON of request body. Like below:

Ex. GetReqBody(w_inBuffer : 'IFS' : '/MDRest4i/testl.json');

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 115/ 167

‘ MIDRANGE DYNAMICS

providing innovative IBM i solutions M DCMS
Arguments
e ReqBody 5242880a
e Type 3a options(*nopass)
e |FSPath 100a options(*nopass)
Returns
N/A

18.4.9 LoadReqHdrToDB

This function can be used to write the specific http header and its value to MDRIJSONF file. This function would
generally be used in z_Procxxx subroutines. The developer will have to specify which header is to be retrieved and
written to DB file. This is because the REST service doesn’t receive all the headers in any environment variable or
request body. The second parameter is the entry type under which you want to write the http headers in DB file. The
third parameter can be used to supply the library name from where “MDRISONF” file should be used. If not specified,
DB file MDRIJSONF in library list will be used instead. Below is the example:

Begsr z_ ProcGET;

// Get incoming headers
LoadregHdrToDB ('X MYHEADER':'OHD':'MDRDEMOD') ;

Endsr;

Arguments
e Http Header name 100a
e Entry Type 3a

e DBF Library 10a

Returns

N/A

18.4.10 LoadQryParmToDB

This function can be used to write all the query parameters (as received in REST service) to MDRIJSONF file. The
procedure has only one and optional parameter. You can supply the library name where MDRJSON file exists. If this
parameter is not supplied, it will attempt to use the file in library list. Below is the example on how to use it.

Begsr z_ ProcGET;

// Get parameters in the MDRJSONF
LoadgryparmtoDB ('MDRDEMOD') ;

Endsr;

Arguments
e DBF Library 10a

Returns

N/A

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 116/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

18.4.11 LoadRspHdrFromDB

This function can be used to read the http headers and their values loaded in DB file and send those headers along
with the response to REST service. The first parameter is the entry type which is supposed to be processed from DB
file and the second parameter is optional. You can supply the library name which should be considered for using
MDRIJSONF file, otherwise, *LIBL will be used. Below is the complete example of using all the three functions.

Begsr z ProcGET;

// Get incoming headers
LoadreqHdrToDB ('X MYHEADER':'OHD':'MDRDEMOD') ;

// Get parameters in the MDRJSONF
LoadgryparmtoDB ('MDRDEMOD') ;

// Add headers from MDRJSONF
LoadrspHdrFromDB ('IHD': 'MDRDEMOD"') ;
Exsr z PrcResponse;

Endsr;

Arguments
e Entry Type 3a

e DBF Library 10a

Returns

N/A

18.4.12 RsplsonfFile ()

This procedure can be used to send the response by reading an IFS file and then sending the content as the response.

Copy Book member: LXRRESTP
Arguments

File Path 1024a
Returns
N/A

18.4.13 rtnHeader()

This procedure can be used to retrieve the value of custom headers received in REST http request. This procedure
returns the value of custom header supplied in the parameter.

Copy Book member: LXRRESTP

Arguments

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 117/ 167

‘ MIDRANGE DYNAMICS

providing innovative IBM i solutions M DCMS
e Header Name 100
Returns
HeaderValue VARCHAR(2048 A)

18.4.14 SetHttpStatus()

This procedure sets the variables “w_status” and “w_reason” with the values received in the parameter. These values

are used in LXRPush procedure for writing the same in custom header part.
Copy Book member: LXRRESTP
Arguments

1. Status number 35,0

2. Reason 50
Returns

None

Example:

18.4.15 ValidateToken()

This procedure retrieves the values of “CLIENTID”, “APPID” from http header and also retrieves the “Authorization”
header that has been supplied as part of authentication. The “CLIENTID” and “APPID” are optional and the
“Authorization” is expected to be a Bearer token.

It then tries to fetch the token details from the MDRest4i credential stores file to find the secret for validating the
token to make sure it’s a valid token (i.e. existing in the database as well as its not expired) before proceeding ahead
with the REST service. If the token is not valid, the error will be sent and REST service logic won’t continue further.

18.4.16 wlogSRV()

This procedure is controlled by the conditional compiler directive LXR_LogService and is used for logging the
requested message/severity in the LXRSRVLOG file under MDRSTxxx library. The logging happens only when the global
indicator ng_customlog is *On.

Copy Book member: LXRRESTP

Arguments

1. Log message 50
2. Message severity 10i,0 options(*noPASS)

Returns

N/A

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 118/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

18.4.17 WritelFSFile()

This procedure can be used to write the specific IFS Files received as part of request body at the specific IFS location.
Supply the file name (e.g. “abc.pdf” as the first parameter and the IFS path (e.g. /MDRest4i/uploads/). Refer
“Downloading the IFS files” section in this document for more details on how to use this function.

Copy Book member: LXRRESTP

Arguments

e File name 200
e |FS Path 1024

Returns

None

18.4.18 wx() — Write XML tags and value

This procedure is used to write the xml response. If the request type is “SP”, it means this is special request (e.g.
version information) and therefore write it directly. If the request type is “TB”, means the request is to write the
beginning of the tag with the name of the tag received in “tag” parameter. If the request type is “TE”, it means the
request is to write the end of the tag. If the request type is “DT”, it means write the begin of the tag followed by the
value received in “value” field followed by the end of the tag. The actual writing happens via call to “Wrtxmldata”
procedure.

Arguments
tag 100
e value 1024
® requesttype 2
Returns
N/A

18.4.19 x() — Write XML tags and value

This procedure is used for writing the character string enclosed within the xml tags. The actual writing happens via call
to “Wrtxmldata” procedure.

Arguments
1. tag 200
2. value 2048
Returns

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 119/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

N/A

18.5 Downloading attachments in REST service

You can receive the attachments received in POST, PUT REST service. As of now, the attachments of type PDF, JAR,
WAR, ZIP, text, png, jpeg and json files are supported. Other file types can also be managed if required.

18.5.1 Default IFS path setting

The data area “DFTUPLOADP” which is set to “/MDRest4i/uploads/” by default is used to identify where the IFS files
received in the REST services should be saved. This data area is part of MDRST library. If you would like to change the
default location of saving the attachments received via REST APIs, please change the value of this data area to the
actual path (making sure slash in the beginning as well as at the end). If the data area is not found or any error occurs,
the files will be saved in “/MDRest4i/uploads” folder.

18.5.2 Saving IFS files in non-default folders

By default, the IFS files are saved in default folder as explained in the above paragraph. In some specific API, you may
like to save the received files in different folders (e.g. zip file in one folder, PDF in another folder etc.). In order to do
this, you have to set the indicator “n_autowrite” to *off in z_Customlnit subroutine of your REST API. In this case, you
have to write the necessary logic in “z_ProcPost” soubroutine (for POST service) and “z_ProcPut” (for PUT service)
where you have to check the names of received files and write at the required paths. The array “r_filercvd” (which is
defined in copybook MDRESTDFN) will have the file names loaded. You can check the name of the file and call the
function “WritelFSFile” specifying the file name (e.g. myPDFFile.pdf) in first parameter and the IFS path (e.g.
/home/myfolder/) as the second parameter. The variable “i_filercvd” maintains the number of files received in
r_filercvd array. If the file received are for example 5, the paramer will be 6 and if the value of this parameter is 1,
means no file has been received. The prototype of this function can be found in MDRESTDFN copybook. e.g. you can
use below statement to write the IFS files:

for w_idxl =1 to i_filercvd—l;
WriteIFSFile ($trim(r filercvd(w_idx1l)) :'/home/lxr/uploads/"');
endfor;

18.5.3 Pre-requisites for receiving the IFS files in REST service.

The global "Content-Type" at request level should be received from the request body as "multipart/form-data" if you
want the REST service to be capable of accepting the IFS files. If the requestbody contains JSON, it must be in the
beginning of the request (i.e. before any pdf, zip, jar, war files). The second requirement is that, the "Content-Type"
should be repeated for each file to specify the file type. The PDF files should have “Content-Type” set to
"application/pdf", that for zip files should be "application/zip" and the jar/war files should have “Content-Type” as
"application/octet-stream". These are http headers and therefore they must be followed by hex ‘0d25’ (i.e. \r\n). The
file name including the file extension should also be available as http header like " filename=abc.pdf" after the
presence of specific "Content-Type" in the request body. The end of the file is identified by the presence of hex '0d25'
(i.e. \r\n followed by the string boundary string (i.e. the value for the header “boundary” in the response).

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 120/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

18.5.4 Loading JSON request body/sending response via DB file

When the REST service receives the request body in JSON format, you can use “JsonToDB” procedure to load the JSON
content of the request body to the DB file. Likewise, if you have JSON content available in DB file, you can use
“JsonFromDB” function to build the JSON response. Please refer the section “Automated parsing and writing of JSON
using DB File” in this document for more details.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 121/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

18.6 Useful Producer Variables

18.6.1 Important Compiler Directive Switches:

LOGERRORS — Write the compiler directive statement “/DEFINE LOGERRORS” just before the copy statement for
MDRESTDEFN to disable the default exception handling in the REST services generated using LXRRESTC, MDRESTDFN,
LXRRESTP copybooks. The logs are written in LXERRLOG file.

REQBODYPARM - If you expect the POST, PUT, PATCH, DELETE service receives the query parameters as part of the
request body, write the compiler directive statement “/DEFINE REQBODYPARM” just before the copy statement for
MDRESTDFN to instruct the REST service pick the query parameters from the request body.

SAVEIFSSWITCH - If you want to save the incoming requests and outgoing responses on the IFS directory, write the
compiler directive statement “/DEFINE SAVEIFSSWITH” just before the copy statement for MDRESTDFN. This will log
the request/response of this particular APl in dedicated IFS folder or the overridden path as per the settings made in
z_Customilnit subroutine.

TRACE — Write the compiler directive statement “/DEFINE TRACE” just before the copy statement for MDRESTDFN to
enable debugging of the generated MDRest4i service. This compiler directive causes the DSPLY statement executed
and this makes the REST service job to go to message wait from where STRSRVJOB followed by STRDBG could be used
to debug.

TRACKTIME - If you want to monitor the performance of the API, you can track the time taken in different parts of the
REST API. In order to track the time, write the compiler directive statement “/DEFINE TRACKTIME” just before the
copy statement for MDRESTDFN to instruct the REST service track time in file under MDRST library.

18.6.2 Important Pointer Variables:

t_readPointer — This pointer is used to read the large string data received as part of the POST http request through
“CgiStandardRead1” procedure. This pointer points to the user space LXRSCHEMA in QTEMP library if the size is up to
5MB but otherwise, it gets assigned the memory allocated from heap.

t_sendPointer — This pointer points to the “LXRSENDP1” user space in QTEMP library if the size of requested response
is limited to 5MB, otherwise it contains to the address of the allocated heap memory. Whenever we use “w”
procedure to write the data to standard output, the data is stored at this pointer which is later converted to UTF8 and

send to the requester/consumer.

18.6.3 Important Indicator Variables:

n_autowrite — This indicator controls the downloading of the large files if the indicator “n_largeFiles” is set to *On.
When this indicator is set to *On (& this is the default), the files are downloaded in default directory, otherwise, you
can set to *Off and use function “WritelfsFile” and write at the required IFS location.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 122 /167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

n_getrspsize/n_getreqsize — By default, MDRest4i reserves 5MB memory area for the outgoing response. However,
this response could be much larger. You can use “w_maxrsplen”/”w_maxreqlen” variables to specify the size of the
request/response. However, if you would like to know the exact response size sent by the REST API or the exact
request size received in the API, set the indicators “n_getrspsize” (for the response size) and “n_getreqsize” (for the
request body including headers). If these indicators are set *On, the APl will respond back with the size of request or
response (whatever has been requested by setting the indicators). When “n_getrspsize” indicator is set *On, the API
by default reserves 500MB memory space in two pointers (i.e. 1GB per call) from the heap. If you however know that
the size won’t be that large, you can set the maximum expected size in “w_debug_max_rsp_size” (e.g. 20971520 for
20 MB) and it will then only allocate two pointers with this size. Be very careful in doing this as large memory from
heap is getting allocated to get this information.

n_largeFiles — If you want to enable the API receiving large IFS files in the request body (i.e. more than 5MB in total
size), set the indicator “n_largeFiles” to *On in z_CustomInit subroutine. In this case, you have to manually add the
statement “ alloc(*teraspace) “ in control specification of the program.

n_LogErrors — When this indicator is set to *On, it will log the exceptions on LXERRLOG file.

n_reqbdyprmfnd: This indicator is used to instruct the REST API to pick the query parameters from the request body
and is applicable only for POST, PUT, PATCH and DELETE type requests.

n_savelFSSwitch — The logging of the http request in an IFS file (as explained in w_savelFSPath variable above)
happens only when this variable is set *On. You can set this variable to *On before inclusion of the copybook
LXRRESTC.

n_sendUtf8 — This indicator is set to *On by default and that means the response will be translated to UTF-8 before
transmitting to the requesting consumer. If the response you are writing is already in UTF-8 form, you can disable the
UTF-8 translation by switching this indicator to *Off in z_CustomInit subroutine of your REST service.

n_trace — This indicator is used to enable debugging. It is initialized to *On if the literal “trace” is defined under the
conditional compiler directive (e.g. “/define trace”) before the inclusion of MDRESTDFN copybook. If this variable is
initialized to *On, the job processing the http request will go to message wait and you can then use STRSRVJOB
followed by STRDBG to debug it. You can also initialize this indicator in z_CustomInit subroutine if you don’t want to
initialize via compiler directive “define” statement.

n_trackTime: This indicator (when set to *On) records the time tracking information in TRKTIME table under MDRST
library. The tracking provides the information about the time taken in different sections of the REST APl Processing.

ng_mdrJobHdr — This indicator is set to *off by default and you can switch it to *On if you want to send the job
information to the consumer as part of HTTP header when the specific REST service is being called. The purpose could
be you want to know which of the several CGl jobs is processing your request so that you debug it. The header name
would be “x-mdrsrvjob” and the value would be in form “MYRESTPGM-MYPGMLIB-MYSERVERJOB-nnnnnn” (where
nnnnnn is the job number).

ng_UTF8Conv — If this indicator is set to *ON in subroutine z_Custominit, two work variables available for use:
w_utf8reqgbody - contains POST request body in UTF8 format up to 5mb in size

w_utf8response - place response body in UTF8 format in this variable before end of z_ProcPost subroutine
execution

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 123/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

ng_oldmethod — This variable is set *Off by default and that means the writing of the response is being done using
standard beginObject, addChar etc functions. However, if you want to do it via old “w” function of MDRest4i, set this

indicator to *On in “z_Custominit” subroutine. In that case, the data must be written by “w” function and anything
written via addChar, beginObject etc will be ignored.

18.6.4 Important arrays:

r_filercvd — When large files are being downloaded, this array will provide the list of files which have been received.
This array can be used in z_ProcPost or z_ProcPut subroutines. The number of files received would be available in the
variable “i_filercvd”. If the files received are for example 4, the value of “i_filercvd” will be 5 and therefore use this
variable by reducing 1 from the value.

18.6.5 Important data Variables:

w_debug_max_rsp_size — When the indicator “n_getrspsize” is set *On to return the actual response size of the REST
service, this variable can be used to specify the max debug response size for allocating the memory from heap storage
and to find the response size. Refer the documentation of “n_getrspsize” in “Important Indicator Variables” section
above.

w_maxrsplen/w_maxreqlen — The REST service by default reserves 5MB area for the outgoing response as well as the
incoming request body. However, if your REST service is expected to receive or send larger data, you can use these
variables to set the size. If the response size is expected to be larger than 5MB, set the value in “w_maxrsplen” in
“z_Customlnit” subroutine of the program. Likewise, if you expect the POST/PUT/PATCH service may receive the
request body larger than 5MB, set the variable “w_maxreglen” in “z_CustomInit” subroutine. The value being set to
either of these variables must be greater than 5MB (i.e. 5242880).

wg_Jsonlength — The length of the string to be translated from UTF-8 to EBCDIC should be stored in this variable
whenever the string being translated is large and the JSON parsing is requested through the pointer tg_outptr. The call
to JSONSAX procedure to parse the JSON uses the content at tg_outptr and length of the string from wg_jsonlength
variable if the JSON string received in parameter is blank and tg_outptr is not null. Otherwise, it parses the JSON string
received in the first parameter.

wg_prddalib — This variable can be assigned to the name of the library where LXERRH file exists. This is only required if
you enable exception logging and you do not have MDRSTxx in library list of the http server. If the variable is not
assigned, it will try to fetch the value from the MDRest4i Instance settings (i.e. call to “MRLOCINF” program).

w_reason — This is also related to the response of the http service. This is set to “OK” but if you are setting the above
(i.e. “w_status” to some other status), you can set “w_reason” also to write the specific reason for the non-default
response status.

w_reqgbody - This variable is used to hold the request body received in the program. If there is multiform type
content, it will only contain the JSON body which was received in first part of the request (i.e. before any file
attachments). This variable will have the value available at the beginning of the z_Procxxx subroutines. This variable is
2MB in size.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 124 / 167

19

19.1

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

w_response —This variable will hold the response which is being sent from the REST service. The subroutine
“z_CustomExit” has been provided for manipulating the response. This is controlled by the compiler directive
“LXR_CustomExit”. If you want to use this variable, add the statement “/define LXR_CustomExit” just before the /copy
statement on LXRRESTC. You will have to then define z_CustomExit subroutine in the program where you can use the
variable “w_response” for whatever you want to check or act on the value. This variable is 2MB in size.

If you are setting the value of either variable greater than 16MB, you have to also add “alloc(*teraspace)” in H-spec
(fixed form RPG) or CTL-OPT (in fully free form RPG) of your program to instruct the compile for using the teraspace.

w_savelFSPath — This variable holds the IFS path where http request received in your REST service program will be
logged. You can assign the path (e.g. /MDREST4i/temp/yourfile.json) in this variable in z_CustomiInit subroutine of
your program if you want to log the request at specific IFS path. If this variable is blank, the path to “log” folder is
identified from the MDRest4i instance settings and the file name is named as “LXRLOGS” followed by timestamp.

w_status — This variable is set to ‘200’ by default and is used to write the REST service response status. You can
change the value of this variable in your REST API if you want to send some other status code (e.g. different success
type or different failure type based on some data validations).

w_uploadpath — This variable name is used to hold the default upload path when the REST service receives PDF, ZIP,
JAR or WAR files as part of POST, PUT request and you want to process them. If the variable is blank, it loads the path
of “uploads” folder from the MDRest4i instance library settings.

w_utf8reqgbody — contains POST request body in UTF8 format up to 5mb in size — only available when ng_noUTFConv
indicator is set to *on in z_Custominit

w_utf8response — place response body in UTF8 format in this variable before end of z_ProcPost subroutine
execution — only available when ng_noUTFConv indicator is set to *on in z_Custominit

JSON Handling

These functions are used in both the REST service and the consumer. They have the prototypes declared in
MDRJSONYC and actual definition comes from MDRJSONY module available in LXRGLOBAL binding directory.

JSON Reading Functions

19.1.1 GetlsonStr

This function copies the full JSON string available at the JSON tree. This function is generally required in REST service
when the JSON request body has been loaded to the tree. In consumer, this function can be used in order to receive the
JSON part of REST service response. This copy is done at the pointer supplied as the first parameter. The second
parameter is expected to have the value which is the memory size available at that pointer. The procedure returns the
length of data copied at the supplied pointer.

Arguments
e Buffer Pointer *
e Buffer Size 10i,0

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 125/ 167

MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

&

Returns

Data Size 10i, 0

19.1.2 GetRootNode

This function returns the address of root node for the JSON tree loaded via JSONSAX procedure call.

Arguments
None
Returns

Root Node Address *

19.1.3 JGetElementV

This function returns the value of simple array elements (e.g. “colours”: [“blue”,”green”,”black”]). In this case, if we
call the function as JGetElementV(‘colours’:2), it will return the value ‘green’.

Arguments
e JSON Path 500A

e Array Index 10i,0

Returns

Element Value 500A

19.1.4 JGetArrayldx/ JGetArrayDim

This function returns the maximum array index of the last element supplied in JSON path. For example, the path is
supplied as “country.city.schools”. In this case, suppose “country” and “schools” are the arrays and city is an object.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 126 / 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

The function will return the maximum index of the “schools” array inside any element of the “country” array.
However, if we supply “country(2).city.schools”, it will return the maximum index of schools array in the country array
at index=2. This function therefore helps determine how data is loaded in the specific array.

Arguments

JSON Path 2048A
Returns

Array Index 10i, 0

19.1.5 JpathN

This procedure can be used to return the value of the requested JSON path in signed numeric form. If the requested
path is not found or the value is non-numeric or the number of digits before decimal place is more than the value
supplied in the second parameter, zero is returned. Otherwise, the numeric value is returned. If the value has negative
sign, it is returned with sign.

Arguments

e Qualified JSON Path 2048A

e Length before decimal place 10i,0 options(*nopass)
Returns

1. JSON value for the specified qualified path 30P,9

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 127/ 167

MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

&

19.1.6 JpathU

This procedure is same as JPathV above, except that, it returns the value in upper case if the requested JSON path is
found.

Arguments

e Qualified JSON Path 2048A

e IsNull N Options(*nopass)
Returns

JSON value corresponding to the specified qualified path 10240A

19.1.7 JpathV

This procedure returns the value corresponding to the requested property (label in the qualified path). If the specified
path not found, blank is returned. The second parameter is optional and if you expect the “null” values to be present
in the supplied JSON and would like to track if any parameter was supplied with “null” value, supply second
parameter. When the call to JPathV returns control back to program, check if the value in second parameter is *On
which would mean the parameter is set as null in JSON.

Arguments
1. Qualified JSON Path 2048A
2. IsNull N Options(*nopass)
Returns

JSON value corresponding to the specified qualified path 10240A

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 128/ 167

MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

&

19.1.8 JpathVLong

This procedure returns the length of the JSON value and moves the value into the pointer specified in the second
parameter.

Arguments

Qualified JSON Path for example “address.street” 2048A

A pointer name which should have set with the | *
address of the variable where data is supposed to be
returned. The JSON value is loaded into this pointer

The third parameter is supposed to contain the | 10U 0
length of memory/variable being supplied at
parameter# 2

optional indicator that can be used to return the | n
value was found to be null at specified path

Returns

Length of data found in JSON value 10u S

Example

19.1.9 Jpathz

This is like JPathV except that it returns a timestamp field. If the data matches
the I1SO 8601 format for a timestamp, it will be converted to an RPG timestamp
automatically. If it matches an RPG timestamp, that will be returned instead.

Note: in the SDK Ul, to have this function generated for a field in the parsing section of a provider or a consumer, the
format must be set to Date-Time, and the x-ibmitype as timestamp and a maxlength of 26

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 129/ 167

‘ MIDRANGE DYNAMICS

providing innovative IBM i solutions M DCMS
Format date-time
IBMI-Type { timestamp v
Arguments

@param (input) path 2048a = character string representing a JSON path
@param (input/output) isNull n = Returns *ON if value is NULL, *OFF otherwise
Returns

@return value (in timestamp format) of the JSON data, or z2'0001-01-01-00.00.00.000000' upon error.

19.1.10 JSONSAX

This function loads the tree from the JSON supplied in different possible formats depending on the values supplied in
the first parameter. The possible values are “*IFS” or “*STDIN” or blank.

If *IFS is supplied, the second parameter is expected to have fully qualified IFS path starting from root till the file name
(e.g. /home/MDRest4i/JSONToParse.json) and in this case, the JSON from this file will be read and parsed. e.g.

If the value in first parameter is “*STDIN”, the procedure will read the JSON from the standard input (which in case of
the REST service is the request body). In this case, second, third and fourth parameters are ignored. E.g.

If the first parameter is neither “*IFS” nor “*STDIN”, it is expected that the third parameter is being supplied as the
address of the JSON buffer and fourth parameter has the length of JSON data available at that pointer. e.g.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 130/ 167

19.2

MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

&

Arguments
1. Parsing Method 10
2. IFS Path 1024
3. Buffer Pointer *
4. Buffer Length 10i,0
5. Error 500a
Returns
N/A

JSON Writing Functions

19.2.1 addBool()

This procedure can be used to write the indicator value as “true” and “false” to the response. It receives the label
name as the first parameter and the indicator value as the second parameter. If the indicator is set to *On, it sends
the value as “true”, otherwise, “false”.

Arguments
e Label name 200a
e Value n
Returns
N/A

19.2.2 addcChar()

This procedure is called from REST service or consumer program to write the json label/value for an element. It
receives the label name as the first parameter and the value of the label as the second parameter. It writes the label
and value in JSON format. Escaping is performed in json value (if the value contains double quote or back-slash). If the
value of label is blank, it only writes the value and this type of call is used to write the values for normal (i.e. non-
object) array in JSON.

Arguments

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 131/ 167

‘ MIDRANGE DYNAMICS

providing innovative IBM i solutions M DCMS
e Label name 200a
e Value 2048a
Returns
N/A
Example

19.2.3 addCurr()

This procedure can be used to write the numeric values (e.g. currency) such that if the first character is decimal, it will
prefix zero to avoid JSON error. It writes the label and value in JSON format.

Arguments
e Label name 200a
e Value 15P,2
Returns
N/A

19.2.4 addDeci()

This procedure can be used to write the decimal values to the response. It receives the label name as the first
parameter and the decimal value of the label as the second parameter. It writes the label and value in JSON format. If
the value received doesn’t have any digit before the decimal, zero is added before decimal to make it valid JSON.

Arguments
e Label name 200a
e Value 15P,5
Returns
N/A

19.2.5 addintr()

This procedure can be used to write the integer values to the response. It receives the label name as the first
parameter and the integer value of the label as the second parameter. It writes the label and value in JSON format.

Arguments
e Label name 200a
e Value 15P,0

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 132/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

Returns

N/A

19.2.6 addNumber()

This procedure can be used to write number values which have more than 5 decimals to the response. It receives the
label name as the first parameter and the number value of the label as the second parameter. It writes the label and
value in JSON format.

Arguments
e Label name 200a
e Value 100a
Returns
N/A

19.2.7 addTimestamp()

This procedure can be used to write a timestamp that uses *ISO format(includes T and timezone suffix). It receives the
label name as the first parameter and a valid RPG timestamp value as the second parameter. By default it uses UTC
format, but this can be set with different input parameters, as described below.

Note: in the SDK Ul, to have this function generated for a field in the parsing section of a provider or a consumer, the
format must be set to Date-Time, and the x-ibmitype as timestamp and a maxlength of 26

Format date-time

IBMI-Type timestamp v

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 133/ 167

MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

&

addTimestamp extproc("YAJL_ADDTIMESTAMP")
name varying CONST OPTIONS(

val CONST

tz CONST OPTIONS(

datesep varying CONST OPTIONS(

timesep varying CONST OPTIONS(

tzsep varying CONST OPTIONS(

Arguments
name Varchar(65535) CONST OPTIONS(*VARSIZE:*OMIT);
val Timestamp CONST;
tz Char(6) CONST OPTIONS(*OMIT:*NOPASS);

datesep Varchar(1) CONST OPTIONS(*OMIT:*NOPASS);
timesep Varchar(1) CONST OPTIONS(*OMIT:*NOPASS);

tzsep Varchar(1) CONST OPTIONS(*OMIT:*NOPASS);

Returns

yajl_gen_status_ok upon success, or generator status code upon failure

19.2.8 beginArray()

This procedure is called from REST service or consumer program to open the object array or normal array. This
procedure receives the label name as the parameter and if the name is blank, it writes open square bracket to the
output pointer, otherwise it writes open square bracket with label.

Arguments

Label name 200a

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 134/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

Returns

N/A

19.2.9 beginObject()

This procedure is called from REST service or consumer program to write labeled or non-labeled open curly bracket.
The procedure receives the label name as the parameter and if the name is blank, it writes open curly bracket to the
output pointer, otherwise it writes open curly bracket with label.

Arguments

e Label name 200a

Returns
N/A

19.2.10 endObject()

This procedure is called from REST service or consumer program to write closing curly bracket.
Arguments

N/A

Returns

N/A

19.2.11 endArray()

This procedure is called from REST service or consumer program to write the closing square bracket.
Arguments
N/A

Returns

N/A

19.2.12 wilong()

This procedure can be used to write pre-formatted JSON. It is up to you to make sure the JSON is properly formatted
and escaped. It is capable of much larger outputs Up to 5Mb.

Arguments
e pl _DataToSnd 1la Data to be written to output (accepts data up to 5Mb)
e pl_datalen 10i 0 Length of data being sent in pl_DataToSnd

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 135/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

19.2.13 w()

This procedure is deprecated but has been provided for backward compatibility of older version of MDRest4i. You
would mostly use this function for the programs written using the older version of the product. In order to use this
function, the variable “ng_oldmethod” must be set as *On. By default, this indicator is set to *Off and that means the
writing of the JSON data is being done using standard beginObject, addChar etc functions. However, if you want to do
it via “w” function, set this indicator to *On in “Initialize” procedure of consumer program or “z_Custominit”
subroutine of the REST service. When this indicator is *On, the data written by “w” function will be accepted and
anything used via addChar, beginObject etc will be ignored.

Arguments

e http Data 20480a

Returns

N/A
19.3 JSON Utilities

19.3.1 CreateJSONF

While dealing with the JSON output to DB file or loading JSON data in DB file, this procedure can be called to create
the empty object of “MDRJISONF” file from the MDRest4i product library (i.e. MDRSTxxx) to the library supplied as the
first parameter. If the file already exists, no action is taken and “N” is returned back in the second parameter,
otherwise, “Y” is returned back.

Arguments

e DB File Library 10A

e Success 1A

Returns

None.

19.3.2 ClearJSONF

This procedure can be called to delete the records of specified entry type from “MDRJSONF” file in the specified
library. The first parameter is the library name where “MDRIJSONF” file should be located, second parameter tells the
entry type to be deleted. Third parameter returns “N” if error occurred while opening the file, otherwise, it returns
“Y”. The last parameter returns the error message or the message indicating how many records have been deleted

from the file.
Arguments
e DB File Library 10A
e Entry Type 3A
e Success 1A
e Status Message 50A
Returns
None.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 136/ 167

MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

&

19.3.3 cleanTree

This function deallocates the dynamic memory allocated from heap for storing the JSON data. This procedure must be
called from the REST service program and from the consumer program at the end of processing. The REST services or
consumers generated via MDRGENPRD or the SDK already have the call to “cleantree” procedure.

Arguments
None
Returns

None

19.3.4 DeleteJSONF

This procedure can be called to delete the object of “MDRIJSONF” file from the library supplied in the first parameter.
If any error occurs, “N” is returned, else “Y” is returned via second parameter.

Arguments
e DB File Library 10A

e Success 1A

Returns

None.

19.3.5 GetlJsonFromDBF

When the JSON is parsed and loaded in MDRJSONF table, this procedure returns the value of specific JSON label from
this file. The first parameter is the JSON Path till the last label for which the value is to be determined.

Arguments

e Path 2048A
e DB File library 10A
e Entry type 3A

Returns

JSON label value 10240

You can use this function like below:

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 137/ 167

MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

&

If the value is not found, it will return the value ‘“*notFound’.

19.3.6 JsonFromDB

This procedure reads the JSON content available in DB file named “MDRIJSONF” and converts to JSON format for
sending as request body from the consumer or for sending as response from the REST service. The first parameter
expects the library name where the “MDRISONF” file exists and third parameter is to return back the success or
failure status in form of Y or N. The second parameter tells what type of entries are to be processed (e.g. “REQ”, “RSP”
or any other 3 characters that you have written the records with) from the DB file.

Arguments
e DB File Library 10A

e Entry Type 3A

e Success 1A

Returns

None.

19.3.7 JsonToDB

This procedure parses the JSON content available in string form and writes to the DB file named “MDRJSONF” in the
specified library. The first parameter expects the library name where the “MDRISONF” file exists. The second
parameter tells the value of entry type field (e.g. “REQ”, “RSP” or any other 3 characters) while writing the parsed
JSON entries to DB file. The third parameter is to return back the success or failure status in form of Y or N.

The fourth and fifth parameters are optional. You don’t have to specify them when you are loading the JSON from the
request body of REST service or response in consumer. However, if you are writing an standalone program that
contains JSON string and you want to load that JSON from string to DB, you have to send the address of that string in
fourth parameter and the length of the JSON content as fifth parameter.

Arguments

e DB File Library 10A

e Entry Type 3A

e Success 1A

e JSON Pointer * options(*nopass)

e JSON Length 10i,0 options(*nopass)
Returns

None.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 138/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

19.4 Automated parsing and writing of JSON using MDRJSONF File

20

MDRESt4i has two useful JSON functions:

JsonToDB — will automatically parse incoming JSON and write the name value data into a generic,
predefined database file/table called MDRJSONF

JsonFromDB — will build a structured JSON payload from a predefined database file/table called
MDRJSONF.

The purpose of these is to avoid having to write any specific JSON parsing or JSON writing logic at all in the APl or
Consumer, and rather use SQL/native 1/0 to read or write the data being transported in JSON format.

For the full details of feature, please consult section “Automated parsing and writing of JSON using MDRJSONF File”
in the MDRest4i_11_Tutorial_English document, and the JSON Utilities section above for the related functions such as
CreateJSONF, ClearJSONF and DeleteJSONF

19.4.1 JSON Parsing Example

In order to understand what all functions you can use to extract the data from JSON arrays and objects, refer example
JSONPARSE in QEXAMPLES source file under the product library (which has detailed documentation of each function
used). The JSON content which is considered in this example is available in JSONPARSE source member in QEXJSON
source file. In order to correlate the processing with the output, below is the response which is produced after calling
it.

® %! Request 1

, Method Endpoint Resource Parameters ,

¥ posT B nttp://mddev.mdems.ch:2513 2 /skdemo/JSONLBLS2 wt+e
<

+XTE . - o’

Name Value Style Level

av

B aw

Media Type application/json

: 85000

HTML [ECI XML
i

Raw

Raw

XML Handling

When you want to write the response to SOAP/REST services or you want to parse the XML content received as the
request body, you can use various XML procedures for data writing or extraction depending on the requirement as
explained below. These procedures are available in LXRXML module which can be bound by adding LXRXML binding
directory. The prototype definitions of these functions are available in LXRXMLC copybook.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 139/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

20.1 XML Writing Functions

20.1.1 wx()

This procedure is used to write various types of XML entries to the output. If the requested type is ‘SP’, it means this is
special request to just write the supplied content (e.g. XML version information) and therefore the value received in
“tag value” is written to the output. If the request type is ‘TB’, the value supplied in “XML Tag” parameter is written as
opening tag. If the request type is ‘TE’, the value supplied in “XML Tag” parameter is written as closing tag. If the
request type is “DT”, this is same as “x” function above and therefore it writes the tag and value pair.

It also writes carriage return and new line characters (i.e. x¥’0d25’) at the end of the string.

Arguments
e XMLTag 200a

e TagValue 2048a

e Entry Type 2a

Returns

N/A

Example:

Above piece of code generates below XML content:

<?xml version="1.0" encoding="UTF-8" ?>

<root>

<country>UK</country>

</root>

20.1.2 x()

This procedure is used to write tag and value pair in XML form. It also writes carriage return and new line characters
(i.e. x¥'0d25’) after writing the requested tag.

Arguments

10. XML Tag 200a
11. Tag Value 2048a

Returns
N/A

Example:

Above code would write the XML tag/value as below:

|<Country>UK</country>

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 140/ 167

20.2

MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

XML Reading Functions

We will use below XML for explaining the functions in this section:

<?xml version="1.0"?>
<catalog>

<address>Johannesburg</address>

<book id="bk101">
<author>Gambardella, Matthew</author>
<author>Bradbury, Brad</author>
<author>George, Ray</author>
<title>XML Developer's Guide</title>
<genre>Computer</genre>
<price>44.95</price>
<publish date>2000-10-01</publish date>
<description>An in-depth look at creating applications
with XML.</description>

</book>

<pbook id="bk102">
<author>Ralls, Kim</author>

<author>George, Ray</author>

<title>Midnight Rain</title>
<genre>Fantasy</genre>
<price>5.95</price>
<publish date>2000-12-16</publish date>
<description>A former architect battles corporate zombies,
an evil sorceress, and her own childhood to become queen
of the world.</description>

</book>

</catalog>

20.2.1 XGetArrayldx

This procedure returns the maximum index of the array element at the specified path. e.g. for “catalog/book”, it will
return the maximum index of “book” (if its an array like the example shown above). If you supply
“catalog/book(1)/author”, it will return the maximum index of the “author” inside the second array element of “book”
if we supply “catalog/book/author”, it will return the maximum index of “author” across all the elements of the
previous tags. If the last element in the supplied path is not an array, -1 is returned.

Arguments
e Path 500a

Returns

Index Value 10i,0

The first statement above will return the value 1 (which means there are two elements, first one with zero and second
with 1 index). The second statement will return the value 1 (because the second index of “book” array has two

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 141/ 167

MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

elements of “author”. The third statement will return value 2 (as there are three elements of “author” inside the first
element of “book” and there are two elements of “author” inside second element of “book”.

20.2.2 XGetAttr

This procedure returns the value of the specified XML attribute (e.g. in <book id="bk102">, if we supply the value
“book” in the first parameter and “id” in second parameter, it will return the string ‘bk102’. If the value is not found
“*notFound’ is returned. If there are duplicate values like in above example, it will return the attribute of the last
element processed. If you want to get the value of any other elements of the array type entries, you should use this
function in callback procedure when that specific element has been processed.

Arguments

e Label 100a

e Attribute 100a

Returns

Attribute Value 1024

Example:

Assuming the above statement is called after XML parsing is complete, the value ‘bk102’ will be returned in the
w_string variable.

20.2.3 XGetPathVv

This procedure returns the tag or element value corresponding to the specified XML path e.g. “catalog/address”. In
order to retrieve the value of the tag inside an array, specify the index qualification e.g. “catalog/book(0)/id”. If the
value is not found ‘“*notFound’ is returned. This procedure can be used to retrieve any attribute or tag value across
the entire XML as long as you supply the complete path with the required array qualification.

Arguments
e Path 500a

Returns
Value 1024

Example:

Above code will return the value ‘Johannesburg’ from the first line and ‘bk101’ from the second line.

20.2.4 XGetValue

This procedure returns the most recent value of the supplied tag. If the tag appears multiple times in XML, XGetValue
can only be used to retrieve the values of last occurrence of the tag and not for the previous ones. You can either use
“callback” or XGetPathV function to get any occurrence of the tag. If the value is not found ‘*notFound’ is returned.

Arguments
e Tag 100a

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 142 / 167

‘) MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

Returns

Tag Value 1024

Example:

Assuming the above statements are executed after XML parsing is complete, the first statement will set the value
‘Johannesburg’ in w_string variable and the second line will set the value 5.95 in the same variable.

20.2.5 XGetXMLValue

Sometimes, the XML content/document is embedded inside the main XML. This procedure returns the entire
embedded XML content for the specified tag/label if that tag has embedded XML content.

Arguments
o Tag 100a

Returns
XML Content 20480a

Example: In below example, the tag “rawxmlLogString” contains embedded XML (highlighted in blue).

<?xml version='1l.0' encoding='UTF-8'?>
<S:Envelope

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Body>
<rawxmlLogString><?xml version="1.0" encoding="UTE-8"7?> <XMLLog
xmlns="http://www.nxml.org/IXLog/namespace/"
xmlns:dtv="http://www.xmlcorp.com/xstore/"
XMLLog.xsd">

<Transaction

xmlns:dtv="http://www.datavantagecorp.com/xstore/
dtv:TransactionType="MAIN 7t3~ E">
</Transactioné>
&1t; /XMLLogé>
</rawxmlLogString>
</S:Body>

</S:Envelope>

Below is the relevant section of code in REST service. You have to declare the variable “wg_embeddedxml” as
“import” type and then assign the tag name which will contain the embedded XML content (“rasxmlLogString” in
above XML). After the XML parsing has been completed, you can use the function “xGetXMLValue” which accepts the
tag name as the parameter for the embedded XML. In output, you will get the embedded XML content.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 143 / 167

MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

&

After execution of the above code, “w_string” would contain the string highlighted in blue color in the XML given as
example above for this function.

20.2.6 XMLSax

This procedure initiates SAX parsing. The XML string up to 5MB can be supplied in the first parameter. The second
parameter should have the procedure address of “callback” procedure.

Arguments
e XML String 5242880a
e Callback Pointer *
Returns
N/A

20.2.7 XMLSaxF

This procedure initiates SAX parsing for the XML content inside the IFS file. The first parameter is the IFS path of the
XML file including the file name. The second parameter should have the procedure address of “callback” procedure.

Arguments
e File Path 1024a
e Callback Pointer *
Returns
N/A

20.2.8 XMLSaxUs

This procedure initiates SAX parsing for the XML content inside the user space. If your XML is in a program variable
rather than the user space, you can supply the address of that string to the pointer “tg_inPointer” (exported from
LXRXML). Otherwise, the first parameter is the user space name (i.e. library name + user space name). The second
parameter is the length of the data to be processed from the user space. The third parameter should have the
procedure address of “callback” procedure and fourth parameter is optional and can be supplied if you want to start
processing XML content at specific position instead of the beginning of the user space.

Arguments
e User Space 20a
e DataLength 10i,0
e Callback Pointer *

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 144 / 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

e Begin Offset 10i, 0

Returns

N/A

20.2.9 XMLSaxUSE

This procedure is same as XMLSAXUS but it gets executed from LXRXMLE copybook when you have embedded XML
(i.e. XML document inside XML document and this internal XML is to be parsed separately while the main XML is
already getting parsed). You can therefore use this procedure in such scenario by adding copybook LXRXMLE in
callback procedure of the main program.

Arguments
e User Space 20a
e DataLength 10i, 0
e Callback Pointer *
e Begin Offset 10i,0
Returns
N/A
Example:

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 145 / 167

MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

&

20.2.10 XRemovelndex

This procedure removes the index along with the open and closing square brackets from the supplied path/string.

Arguments
e Path 1024a

Returns

Return String 1024a

Example:

Above code will set the value ‘root/transaction/amount’ in w_string.

20.2.11 XRemovePath

This procedure extracts the last element from the qualified path from the XML document (e.g. for the string
“catalog/book/author” it will return “author”).

Arguments
e Path 1024a

Returns

Return String 1024a

Example:

The first statement sets the value ‘amount[1]’ in w_string whereas the second line sets ‘amount’.

20.3 XML Utilities

20.3.1 CleanXML

When the XML document is embedded inside main XML content, the extracted portion (i.e. embedded XML content)
has the values <, >, ', " etc. This procedure can be used to replace those values with the actual
characters (e.g. ‘<’ for ‘<’).

Arguments
e Search String 1024a

Returns

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 146 / 167

MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

Return String 1024a

Example: Referring the example for “xGetXMLValue” function as explained earlier, we can add one more statement to
call “cleanXML”.

The content in “w_string” before calling “CleanXML” procedure is below:

&1lt;?xml version="1.0" encoding="UTF-8"?><XMLLog
xmlns="http://www.nxml.org/IXLog/namespace/"
xmlns:dtv="http://www.xmlcorp.com/xstore/"

XMLLog.xsd">
<Transaction

xmlns:dtv="http://www.datavantagecorp.com/xstore/"
dtv:TransactionType="MAIN SALE">

&1t;/Transactioné>

&1t; /XMLLogé>

After the execution of “CleanXML”, it would return below XML content:

<?xml version="1.0" encoding="UTF-8"?><XMLLog
xmlns="http://www.nxml.org/IXLog/namespace/"
xmlns:dtv="http://www.xmlcorp.com/xstore/"
XMLLog.xsd">
<Transaction

xmlns:dtv="http://www.datavantagecorp.com/xstore/"
dtv:TransactionType="MAIN SALE">

</Transaction>

</XMLLog>

20.3.2 XSearchNameSpace

This procedure returns the namespace prefix for the supplied namespace value.

Arguments
e Search String 1024a

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 147 / 167

‘ MIDRANGE DYNAMICS

providing innovative IBM i solutions M DCMS
Returns
Return String 1024a
Example:

It will return the value “S” considering below XML.

<?xml version='1l.0' encoding='UTF-8'?>
<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<rawxmlLogString>value</rawxmlLogString>
</S:Body>

</S:Envelope>

20.4 Useful XML Variables

tg_outXML: This pointer variable contains the address of the next available memory bytes where data will be written
by the “x” and “wx” procedures. The variable is set in LXRRESTC copybook for REST services. The pointer is
incremented to point the next available space after writing the requested string.

tg_inPointer: When you are using XMLSAXUS procedure for parsing the XML content, you can set the address of the
XML string in this pointer variable from the called procedure before calling XMLSAXUS procedure. This variable has to
be declared with “import” keyword in the calling module which for REST services is already done in MDRESTDFN
copybook. When the value is set in this pointer variable, the first parameter to XMLSAXUS is ignored, otherwise, it
fetches the pointer to the user space name and library as supplied in first parameter and uses for SAX parsing of the
content at that address.

wg_outXMLlen: When the data is written in XML form using “x” and “wx” functions as mentioned in “tg_outXML”
pointer explained above, the length of the data is added in this variable and therefore it contains the complete length
of XML content available at the output pointer. For REST services, this variable is declared in MDRESTDFN and used in
LXRRESTC copybooks.

21 IFS Handling

These functions are used to perform the IFS file open, close, read, write operations. The prototypes are declared in
LXRIFSPRO and the actual function definition exists in LXRIFS module. You can use the binding directory LXRIFS in
control specification of the program where IFS operations are needed.

21.1 File Handling Functions

21.1.1 getErrorNo
Return the error number for the last error encountered.

w_errno = getErrorNo();

Returns

e Error Number 10i 0

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 148 / 167

‘ MIDRANGE DYNAMICS

providing innovative IBM i solutions M DCMS

21.1.2 iClose

Closes the file.

Arguments
e File Handle 10i 0

Returns

e Indicator
e On for file closed successfully
e Off for error

21.1.3 iFileHandle

Return the file handle for a file name if that file has been opened already using iOpenxx function.

Arguments

e File Name 1kB
Returns

e File Handle 10i 0

21.1.4 iFileName

Return the file name for a file handle if the supplied handle is valid and belongs to an open file.

Arguments

e File Handle 10i 0
Returns

o File Name 1kB

21.1.5 iFilePath

Return the IFS path for the supplied file handle if the handle is valid and belongs to an open file.

Arguments

e File Handle 10i 0
Returns

e File Path 1kB

21.1.6 iOpenA

Open file for append operation.

Arguments

e File Path 1kB
Returns

e File Handle 10i 0

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com

149/ 167

21.2

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

21.1.7 iOpenN

Open a new file. If the file already exists, it will be deleted and recreated.

Arguments

e File Path 1kB
Returns

e File Handle 10i 0

21.1.8 iOpenR

Open file for read operation.

Arguments

e File Path 1kB
Returns

e File Handle 10i 0

21.1.9 strError

Call this procedure to get the error description for the last error encountered. The error number obtained via
getErrorNo procedure should be supplied as the parameter. The return value should be accepted in a pointer and the
text description of the error can be obtained either via based pointer or %str function.

Arguments

e Error Number 10i 0

Returns

e Pointer to the string containing error description

IFS Data Writing Functions

21.2.1 appendIFS

This function can be used when you want to append the data to an existing IFS file only once (i.e. no subsequent
write/append operations in the same file). This function accepts two mandatory parameters (the file name where data
would be appended and the variable holding the data) and one optional parameter. If the variable being supplied in
second parameter has the data more than 20480 bytes, supply the length of the data as third parameter. It can be
used similar to “writelFS” example above.

Arguments

e File Name 200a

e Data to append 20480a

e Data Length 10i,0 options(*nopass)
Returns

e N/A

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 150/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

21.2.2 W

Write a stream to a file. File must be open for write or append. The file must be open for write or append (see iOpenA,
iOpenN, iOpenR)

Arguments
e File Handle 10i 0
e Write Stream 10kB
Returns

e Indicator
o Off for error
o On if write was successful

Example

21.2.3 iWs

Write a short string to an IFS file. The file must be open for write or append (see iOpenA, iOpenN, iOpenR)

Arguments
e File Handle 10i 0
e Write Stream 100A
Returns

e Indicator
e Off for error
e On if write was successful

Example

21.24 iWnb

Write a number of characters to a file. This function can be used for streams that are too large for the 10kB restriction
on iW(). The file must be open for write or append (see iOpenA, iOpenN, iOpenR)

Arguments

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 151/ 167

‘ MIDRANGE DYNAMICS

providing innovative IBM i solutions M DCMS
e File Handle 10i 0
12. Start Character pointer or string of any size
13. Number of Bytes 10i 0
Returns

e Indicator
e Off for error
e On if write was successful

Example

21.25 iX

Write a single XML tag and value. File must be open for write or append. (see iOpenA, iOpenN, iOpenR)

Arguments
e File Handle 10i 0
e XMLTag 1kB
e XML Value 10kB
Returns

e Indicator
e Off for error
e On if the write was successful

21.2.6 writelFS

This function can be used when you want to write the complete data to an IFS file only once (i.e. no subsequent write
operations in the same file). The function accepts two mandatory parameters (the file name where data would be
written and the variable holding the data) and one optional parameter. If the variable being supplied in second
parameter has the data more than 20480 bytes, supply the length of the data as third parameter.

Arguments
o File Name 200a
e Data to write 20480a

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 152 / 167

‘ MIDRANGE DYNAMICS

providing innovative IBM i solutions M DCMS
e Data Length 10i,0 options(*nopass)
Example

Returns

e N/A
21.3 IFS Data Functions

21.3.1 iReadln

Read one line up to line feed. The file must be open for read.

Arguments

e File Handle 10i 0
Returns

e Buffer 10kB

21.3.2 iReadNb

Read a number of bytes from a file. The file must be open for read

Arguments
e File Handle 10i 0
e Number of Bytes 10i 0
Returns
e Buffer 64kB

21.3.3 readlIFS

This function can be used when you want to read the complete data from an IFS file. This function has two mandatory
parameters (i.e. the file name where data is to be read and the variable to return the data) and one optional
parameter (i.e. data length). If your data is expected to be larger than 65535 bytes, supply the variable with enough
size as the second parameter and supply the size of that variable as the third parameter.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 153 /167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

Arguments

e File Name 200a
e File Data 65535a
e Data Length 10i,0 options(*nopass)

Returns

e N/A

Example

21.4 Read/Write Pointer movement Functions

21.4.1 iShiftA

Shift the read/write pointer to absolute position relative to the first byte of the file.

Arguments
e File Handle 10i 0
e Absolute Position 10i 0
Returns

e Indicator
e Onforerror
e Off if shift was successful

21.4.2 iShiftL

Shift file offset (i.e. read/write pointer) to the left by the specified number of bytes.

Arguments
e File Handle 10i 0
e Number of Characters 10i 0
Returns

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 154 / 167

22

221

22.2

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

e [ndicator
e Onforerror
e Off if shift was successful

21.4.3 iShiftR

Shift file offset (i.e. read/write pointer) to the right by the specified number of bytes.

Arguments
e File Handle 10i 0
e Number of Characters 10i 0
Returns

e Indicator
e Onforerror
e Off if shift was successful

Language Translation Functions

These functions are used in both the REST service and the consumer. In REST service, the final response is first
converted to UTF-8 and then sent to the requester. When the service has received request body, it is first translated
from UTF-8 to host code and then utilized for JSON or XML parsing. The prototype definitions are available in
LXRLANGC and actual procedure definition exists in LXRLANG module. You can declare BNDDIR(‘LXRLANG’) in control
specification of your program where language translation functions are required.

Convert

Converts a string from one language to other language. The returned string is sent in wg_output_value but that
variable has the limitation of 32700 characters. If the string to be translated is expected to be longer, it’s better to
allocate the memory in TG_LANGPTR variable which is exported from LXRLANG module and can be imported in the
program using it. The logic in this procedure checks if the pointer is not null, the conversion string is stored at
TG_LANGPTR pointer and the caller can use basing pointer or %str built-in function to get the translated string. The
translated string length is returned as the output. This length might be different than the one in received format.
Arguments

1. Input_Pointer *

2. Input_Pointer_Length 10i,0

Returns

e Length of Translated String 10i,0

SetConvert

Allocates the language CCSID Elements and opens the conversion descriptor:

Arguments
1. InputCCSID 10i,0
2. OutputCCSID 10i,0

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 155/ 167

22.3

‘ MIDRANGE DYNAMICS

providing innovative IBM i solutions

Returns

Return Code

0 for success and -1 for failure

EndConvert

De-Allocate the language CCSID Elements.

Arguments

1. Conversion descriptor 10i,0

Returns

Return Code 10i,0

0 for success and negative for failure

10i,0

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com

MDCMS

156 / 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

23 General Utility Functions

There are some other functions in different modules that can be used for some specific purpose. Below sections
describe different types of functions.
23.1 Global Functions

These general purpose functions have the declaration in LXRGLOBALC copybook and the actual definition in
LXRGLOBAL module. The binding directory LXRGLOBAL is used to access these functions.

23.1.1 Cap

This procedure translates the received string first to lower case and then the first character is translated to upper
case. The translated string is returned from the procedure.

Arguments

e |nput String 1024
Returns

e Qutput String 1024

myString = 'AbCdEF’;
Capitalized = Cap(mysString);
// Capitalized = 'Abcdef;

23.1.2 CountParms

This procedure counts the number of arguments/parameters in URL query string.

Arguments

e Query String 1024
Returns

e Number of parameters 5P,0

23.1.3 DecodeURL

This procedure is to decode the encoded URL. Supply the URL encoded string and it will return the actual URL string.

Arguments

e Input Number 4096A
Returns

e String 4096A

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 157/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

23.1.4 DetermineParm

This procedure returns the value of a given parameter in a URL query string. If the value is not found, the function
returns *notFound.

Arguments

e Parameter Name 20A
e Query String 1024A

Returns

e String 200A

23.1.5 EditN

This procedure edits a number. It removes the leading and trailing zeroes as well as the decimal point for integer
values.

Arguments
e Input Number 15P,5

Returns

e String 20A

23.1.6 EncodeURL

This procedure is for the url encoding in REST consumers. Supply the URL string and it will encode the eligible
characters in URL string and return the converted string.

Arguments

e Input Number 4096A
Returns

e String 4096A

23.1.7 PCode

This procedure converts all percentage encoded strings to corresponding EBCDIC characters.

Arguments

e |nput String 32767
Returns

e Output String 32767

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 158/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

23.1.8 SQLMsg

This Procedure can be used in REST APIs and Consumer programs to return SQL error message in a parameter.

Arguments
e SQL Message 200

23.1.9 Upcase

This procedure translates the received string to upper case and returns the translated string.

Arguments

e |Input String 1024
Returns

e Output String 1024

23.2 CGI Functions

The sending/receiving of the data over the REST/SOAP requires CGI APIs/functions to read the data from the incoming
connection channel and write the response. The source member LXRCGIPRO contains the prototype declarations for
various CGl operations with the target procedure provided in C language library. These functions are accessed through
the binding directory names “CGIBNDDIR".

23.2.1 CgiGetEnvironmentVariable

Retrieve a CGl environment Variable value.

Arguments
1. Buffer pointer to string
2. Buffer Length 10i 0
3. Response Length 10i 0
4. Variable Name 64
5. Variable Length 10i 0
6. Error 16A

This is a CGl standard API.

23.2.2 CgiStandardRead

Read the input buffer in a CGI program.

Arguments
1. Buffer pointer
2. Buffer Length 10i 0
3. Response Length 10i 0
4. Error 16A

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 159/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

23.2.3 (CgiStandardReadl

Read the input buffer in a CGI program.

Arguments
1. Buffer pointer to string for storing the data
2. Buffer Length 10i 0
3. Response Length 10i 0
4. Error 32767A

This is a CGl standard API.

23.2.4 CgiStandardWrite

Write to the CGI output stream.

Arguments
1. Buffer pointer to string
2. Buffer Length 10i 0
3. Error 16A

23.2.5 CgiStandardWritel

Write to the CGl output stream.

Arguments
1. Buffer pointer
2. Buffer Length 10i 0
3. Error 16A

23.2.6 CgiConvertToDbFile

CGlI convert to database file and the function maps to the CGI API QtmhCvtDb.

Arguments:

1. Qualified File Name 20A

2. Buffer pointer
3. Buffer Length 10i 0

4. Structure 60A

5. Structure Length 10i 0

6. Actual Length 10i 0
7. Response Code 10i 0

8. Error 16A

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 160/ 167

MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

23.2.7 Getenv
Retrieves the environment variable.

Example:

Arguments

1. Environment Variable pointer (String variable name)

Returns

1. Environment Variable Value pointer (String result)

Example

Below statement fetches the content length available on POST http request.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 161/ 167

24

241

‘ MIDRANGE DYNAMICS

providing innovative IBM i solutions

HTML Handling

In order to provide html capabilities for sending the data in html form, MDRest4i provides the module LXRHTML and
the binding directory of the same name. The prototypes are defined in LXRHTMLC and LXRHTMLPRO copybooks.

HTML Writing Functions

24.1.1 HSetValue

Changes the value of a replacement variable.

Arguments

1. Field Name 50A

2. New Value 2kB

3. Force Long indicator
Returns

e Indicator
e On if the value was set
e Off if the value was not set

24.1.2 HWrite

Writes a free format string to the HTTP server.

Arguments
e Buffer 64kB

Returns

e [ndicator
o On for successful write
o Off for error

24.1.3 HWriteln

Writes a free format line to the HTTP server.

A line feed character is appended to the end of the string.

Arguments
e Buffer 32000 bytes

Returns

e Indicator
e On for successful write
e Off for error

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com

162/ 167

24.2

‘ MIDRANGE DYNAMICS

providing innovative IBM i solutions

24.1.4 HWriteSection

Writes a section of HTML to the HTTP Server. The first occurrence of the section is written i.e. if the same section
appears on two files, the section from the first file will be written. The replacement values are handled at this stage.

The sections are written immediately and are not buffered for consolidated write operation.

Arguments

e Section 50

Returns

e Indicator
e On for successful write
e Off for error

HTML Reading Functions

24.2.1 HGetEnv

Get the Value for a CGIl Environment Variable.

Arguments

e Environment Variable Name 64A
Returns

e Environment Variable Value 64kB

24.2.2 HGetQuery

Retrieve the Query portion of the URL for HTTP Get method.

Returns

e Query String 64kB

24.2.3 HLoadHTML

Load an HTML file into a user space.

Arguments
e File Path 1kB

Returns
e File Load Indicator
e Onif the file was loaded successfully

e Off if the file failed to load

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com

163/ 167

‘ MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

24.2.4 HReceive

Receive posted data into user space LXRHTMLIN in library QTEMP.

Returns
e [ndicator
e *On for success

e *Off in failure

24.2.5 HReset

Initialise HTML work area.

24.2.6 HUnpack

Gets a value from a form that was sent using the POST method
This function requires a call to HReceive().

This function is depreciated because Web2.0 browsers post form data differently.

Arguments

e Field Name S50A
Returns

e Field Value 2kB

25 CSV Functions

These functions are used to perform CSV file operations. The copybook LXRCSVP contains the prototype definitions
and the actual definitions exist in LXRCSV module which is attached to binding directory LXRCSV.

25.1 csv

Parse a CSV string and return an Array of 100 element of 1000a.

Arguments
1. CSV String 100000A

Returns

e Array of 100 elements.

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 164 / 167

MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

Each element is 1000A.
Each element corresponds to a column
The index for the array is the column number

Example

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 165/ 167

DRANGE DYNAMICS
Mlmg wlmqwo'vaat\ive IBM i solutions M DCMS

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 166 / 167

MIDRANGE DYNAMICS
providing innovative IBM i solutions M DCMS

Further Information & Support

For information about support, training, education and customization services, please contact us at:

support@midrangedynamics.com

Midrange Dynamics GmbH | www.midrangedynamics.com | info@midrangedynamics.com 167/ 167

mailto:support@midrangedynamics.com

	1 Product Overview
	2 Architecture
	2.1 Master Templates
	2.1.1 Consumer (Client) Template
	2.1.2 Producer (API) Template

	2.2 MDRest4i Modules
	2.3 Copybooks
	2.4 MDRest4i RPGLE Header Specifications
	2.4.1 MDRest4i System Binding Directories
	2.4.2 Client Specific Binding Directory
	2.4.3 Activation Groups
	2.4.4 Large Attachments and Payloads

	3 MDRest4i SDK Generator Commands
	3.1 MDRGENPRD – Generate Producer Stub
	3.1.1 Custom copybook logic for specific subroutines (z_ProcGet etc):
	3.1.2 Custom copybook logic for generated Providers
	3.1.3 Custom binding directory

	3.2 MDRGENCNS – Generate Consumer Stub

	4 MDRest4i SDK Generator REST APIs
	4.1 MDRGENXAPI – Generate MDRest4i REST service or consumer from swagger
	4.1.1 MDREST4i SWAGGER/Open APi MDRGENXAPI generator extensions
	4.1.1.1 x-lxrgen extension
	4.1.1.2 Schema parameter attribute specifications:

	4.1.2 Numeric field format mapping between SWAGGER and RPGLE

	4.2 MDRGNAPI – Generate API or Client programs with schema-based procedures
	4.3 MDRSCHEMA – Generate JSON schema from JSON
	4.4 MDRFIELDS – Return the database schema of specified file
	4.5 DSPSRCMBR – Download the specified source member
	4.6 MDRCHK – Check an object’s existence
	4.7 Generated SWAGGER Examples

	5 MDRest4i Paging implementation
	5.1 Additional pagination headers in HTTP server config
	5.2 Pagination logic in the MDRest4i service copybooks
	5.3 Logic in the REST Consumer module for pagination

	6 V12 Token Management
	6.1 MRDCREDX - Token Credentials Store
	6.2 MRDENCRX – MDRest4i SDK Credentials Store I/O Module
	6.3 MRDCREDXR – Token Management Module
	6.3.1 CrtHS256Token ()
	6.3.2 CrtPAToken ()
	6.3.3 CrtRS256Token()
	6.3.4 RefHS256Token()
	6.3.5 ValidateToken ()
	6.3.6 getCNSToken()

	6.4 Token Management REST API’s
	6.4.1 MRDCREDXA - Issue a new token using HS256 algorithm
	6.4.2 MRDCREDXA - Issue a new token using RS256 algorithm
	6.4.3 MRDCREDXA - Issue a personal access token
	6.4.4 MRDCREDXA - Validate the token using client Id and application ID
	6.4.5 MRDCREDXA - Update JWT information
	6.4.6 MRDCREDXA - Delete Credentials Store Entry
	6.4.7 MRDCREDXB - Retrieve the token using client Id and application ID
	6.4.8 MRDCREDXB - Refresh JWT token
	6.4.9 MRDCREDXM - Retrieve all fields from MRDCREDX
	6.4.10 MRDCREDXM – Insert or update credentials into MRDCREDX
	6.4.11 MRDCREDXM - Delete Credentials Store

	7 MDRest4i Coding Standards
	8 MDRest4i Standard Logging REST API using a Physical File (MDRLOGS)
	8.1 MDRLOGS – MDRest4i Logging Database File
	8.2 Logging flow for a REST API Program
	8.3 Components
	8.4 Variables used to enable logging to MDRLOGS
	8.5 Procedures
	8.6 Useful data queue utilities
	8.6.1 Display current messages on a data queue
	8.6.2 Display the Attributes of a data queue
	8.6.3 Display the messages on a data queue
	8.6.4 Clear all messages in a data queue

	9 Logging Consumer in the DB file (MDRLOGS)
	10 MDRest4i Standard Logging using the IFS
	10.1 Logging the REST Service using the IFS
	10.2 Logging the request/response in REST Consumer
	10.2.1 Appending to same IFS log file –

	10.3 Logging the request/response in SOAP Consumer

	11 Custom Logging
	11.1 REST Consumer Logging
	11.1.1 LXRCLTLOG File
	11.1.2 Field Details:

	11.2 REST Producer/Service Logging
	11.2.1 LXRSRVLOG File
	11.2.2 Field Details:

	12 MDRest4i Exception Handling
	12.1 Indicators and general Info
	12.2 Exception Handling in Providers
	12.2.1 LXRRESTC Monitor Function
	12.2.2 LogCriticalError Customizable Function
	12.2.3 Exception Log File

	12.3 Purging the Exception Logs (using IBM Job Schedular)

	13 HTTP Headers in MDRest4i
	13.1 Using In-Bound Headers in the HTTP Request for a Provider
	13.2 Adding HTTP Headers to a MDRest4i API Provider Response

	14 MDRest4i Data Area settings
	14.1 LXRSRCDTL

	15 Upgrade V8 and V11 to V12 Programs
	15.1 Update REST APIs and consumer programs to V12
	15.1.1 MDRUPDVER Command

	15.2 Fix “for” loops in when extracting JSON values with JPath…
	15.2.1 MDRFIXIDX Command

	15.3 V8 to V12 – Manual edits to existing code
	15.3.1 Consumer Code
	15.3.2 Producer Code

	15.4 V11 to V12 – Manual edits to existing code
	15.4.1 Consumer Code
	15.4.2 Producer Code

	16 MDCMS Interface
	16.1 Overview
	16.2 Setup Steps
	16.2.1 Create an Environment in SDK Documenter
	16.2.2 Create MDCMS Attribute for OAPI Specifications
	16.2.3 Create “Developer Library Naming Template” in MDCMS for SDK Console
	16.2.4 MDRPROM – MDRest4i SDK Promotion command
	16.2.5 SDK Console Setup for MDCMS Interface

	16.3 Promotion Steps

	MDRest4i Function/Variable Reference
	17 REST Consumer Handling
	17.1 Consumer (REST Client) Process Flow
	17.2 Consumer Functions
	17.2.1.1 AddhttpHeader
	17.2.2 BuildRequest
	17.2.3 CloseDown
	17.2.4 FixReprocess
	17.2.5 GetAttachments
	17.2.6 GetBody
	17.2.7 GetErrorWarnings
	17.2.8 GetHdr
	17.2.9 GetAllHdr
	17.2.10 GetReqBody
	17.2.11 Initialize
	17.2.12 LoadRspHdrToDB
	17.2.13 LoadReqHdrFromDB
	17.2.14 LoadQryParmFromDB
	17.2.15 MemCleanup
	17.2.16 SetReqBody
	17.2.17 WriteIFSFile

	17.3 Build Request and Process Response via DB file
	17.4 Useful Consumer Variables
	17.4.1 Consumer Timing Variables
	17.4.2 Global Indicators

	17.5 Controlling Authentication in Consumers
	17.6 Proxy Handling

	18 REST Producer (API) Handling
	18.1 Producer Process Flow
	18.2 MDRest4i Producer Switches
	18.2.1 LXR_CheckParms
	18.2.2 LXR_CustomInit
	18.2.3 LXR_CustomExit
	18.2.4 LXR_LogService
	18.2.5 LXR_ProcGet
	18.2.6 LXR_ProcPut
	18.2.7 LXR_ProcPost
	18.2.8 LXR_ProcPatch
	18.2.9 LXR_ProcDel
	18.2.10 LXR_SetMethod
	18.2.11 LXR_setParms
	18.2.12 LXR_SendSchema
	18.2.13 LXR_SendSchemaManual

	18.3 Important /Customizable subroutines in Producer Processing
	18.4 Producer Functions
	18.4.1 AddAttachment()
	18.4.2 AddHdr()
	18.4.3 CrtUsrSpc()
	18.4.4 extractQryPrms
	18.4.5 GetAuth()
	18.4.6 GetHdr()
	18.4.7 GetPathParm
	18.4.8 GetReqBody
	18.4.9 LoadReqHdrToDB
	18.4.10 LoadQryParmToDB
	18.4.11 LoadRspHdrFromDB
	18.4.12 RspJsonFile ()
	18.4.13 rtnHeader()
	18.4.14 SetHttpStatus()
	18.4.15 ValidateToken()
	18.4.16 wlogSRV()
	18.4.17 WriteIFSFile()
	18.4.18 wx() – Write XML tags and value
	18.4.19 x() – Write XML tags and value

	18.5 Downloading attachments in REST service
	18.5.1 Default IFS path setting
	18.5.2 Saving IFS files in non-default folders
	18.5.3 Pre-requisites for receiving the IFS files in REST service.
	18.5.4 Loading JSON request body/sending response via DB file

	18.6 Useful Producer Variables
	18.6.1 Important Compiler Directive Switches:
	18.6.2 Important Pointer Variables:
	18.6.3 Important Indicator Variables:
	18.6.4 Important arrays:
	18.6.5 Important data Variables:

	19 JSON Handling
	19.1 JSON Reading Functions
	19.1.1 GetJsonStr
	19.1.2 GetRootNode
	19.1.3 JGetElementV
	19.1.4 JGetArrayIdx/ JGetArrayDim
	19.1.5 JpathN
	19.1.6 JpathU
	19.1.7 JpathV
	19.1.8 JpathVLong
	19.1.9 JpathZ
	19.1.10 JSONSAX

	19.2 JSON Writing Functions
	19.2.1 addBool()
	19.2.2 addChar()
	19.2.3 addCurr()
	19.2.4 addDeci()
	19.2.5 addIntr()
	19.2.6 addNumber()
	19.2.7 addTimestamp()
	19.2.8 beginArray()
	19.2.9 beginObject()
	19.2.10 endObject()
	19.2.11 endArray()
	19.2.12 wlong()
	19.2.13 w()

	19.3 JSON Utilities
	19.3.1 CreateJSONF
	19.3.2 ClearJSONF
	19.3.3 cleanTree
	19.3.4 DeleteJSONF
	19.3.5 GetJsonFromDBF
	19.3.6 JsonFromDB
	19.3.7 JsonToDB

	19.4 Automated parsing and writing of JSON using MDRJSONF File
	19.4.1 JSON Parsing Example

	20 XML Handling
	20.1 XML Writing Functions
	20.1.1 wx()
	20.1.2 x()

	20.2 XML Reading Functions
	20.2.1 XGetArrayIdx
	20.2.2 XGetAttr
	20.2.3 XGetPathV
	20.2.4 XGetValue
	20.2.5 XGetXMLValue
	20.2.6 XMLSax
	20.2.7 XMLSaxF
	20.2.8 XMLSaxUS
	20.2.9 XMLSaxUSE
	20.2.10 XRemoveIndex
	20.2.11 XRemovePath

	20.3 XML Utilities
	20.3.1 CleanXML
	20.3.2 XSearchNameSpace

	20.4 Useful XML Variables

	21 IFS Handling
	21.1 File Handling Functions
	21.1.1 getErrorNo
	21.1.2 iClose
	21.1.3 iFileHandle
	21.1.4 iFileName
	21.1.5 iFilePath
	21.1.6 iOpenA
	21.1.7 iOpenN
	21.1.8 iOpenR
	21.1.9 strError

	21.2 IFS Data Writing Functions
	21.2.1 appendIFS
	21.2.2 iW
	21.2.3 iWs
	21.2.4 iWnb
	21.2.5 iX
	21.2.6 writeIFS

	21.3 IFS Data Functions
	21.3.1 iReadLn
	21.3.2 iReadNb
	21.3.3 readIFS

	21.4 Read/Write Pointer movement Functions
	21.4.1 iShiftA
	21.4.2 iShiftL
	21.4.3 iShiftR

	22 Language Translation Functions
	22.1 Convert
	22.2 SetConvert
	22.3 EndConvert

	23 General Utility Functions
	23.1 Global Functions
	23.1.1 Cap
	23.1.2 CountParms
	23.1.3 DecodeURL
	23.1.4 DetermineParm
	23.1.5 EditN
	23.1.6 EncodeURL
	23.1.7 PCode
	23.1.8 SQLMsg
	23.1.9 Upcase

	23.2 CGI Functions
	23.2.1 CgiGetEnvironmentVariable
	23.2.2 CgiStandardRead
	23.2.3 CgiStandardRead1
	23.2.4 CgiStandardWrite
	23.2.5 CgiStandardWrite1
	23.2.6 CgiConvertToDbFile
	23.2.7 Getenv

	24 HTML Handling
	24.1 HTML Writing Functions
	24.1.1 HSetValue
	24.1.2 HWrite
	24.1.3 HWriteLn
	24.1.4 HWriteSection

	24.2 HTML Reading Functions
	24.2.1 HGetEnv
	24.2.2 HGetQuery
	24.2.3 HLoadHTML
	24.2.4 HReceive
	24.2.5 HReset
	24.2.6 HUnpack

	25 CSV Functions
	25.1 CSV

